This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complementation on a power set lattice is an involution. (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| Assertion | compsscnv | ⊢ ◡ 𝐹 = 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) | |
| 2 | cnvopab | ⊢ ◡ { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } | |
| 3 | difeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) | |
| 4 | 3 | cbvmptv | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) = ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑦 ) ) |
| 5 | df-mpt | ⊢ ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑦 ) ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } | |
| 6 | 1 4 5 | 3eqtri | ⊢ 𝐹 = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } |
| 7 | 6 | cnveqi | ⊢ ◡ 𝐹 = ◡ { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } |
| 8 | df-mpt | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) } | |
| 9 | compsscnvlem | ⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) → ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) ) | |
| 10 | compsscnvlem | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) → ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) ) | |
| 11 | 9 10 | impbii | ⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) ) |
| 12 | 11 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝐴 ∖ 𝑥 ) ) } |
| 13 | 8 1 12 | 3eqtr4i | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝐴 ∖ 𝑦 ) ) } |
| 14 | 2 7 13 | 3eqtr4i | ⊢ ◡ 𝐹 = 𝐹 |