This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complementation is an antiautomorphism on power set lattices. (Contributed by Stefan O'Rear, 4-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| Assertion | compssiso | |- ( A e. V -> F Isom [C.] , `' [C.] ( ~P A , ~P A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| 2 | difexg | |- ( A e. V -> ( A \ x ) e. _V ) |
|
| 3 | 2 | ralrimivw | |- ( A e. V -> A. x e. ~P A ( A \ x ) e. _V ) |
| 4 | 1 | fnmpt | |- ( A. x e. ~P A ( A \ x ) e. _V -> F Fn ~P A ) |
| 5 | 3 4 | syl | |- ( A e. V -> F Fn ~P A ) |
| 6 | 1 | compsscnv | |- `' F = F |
| 7 | 6 | fneq1i | |- ( `' F Fn ~P A <-> F Fn ~P A ) |
| 8 | 5 7 | sylibr | |- ( A e. V -> `' F Fn ~P A ) |
| 9 | dff1o4 | |- ( F : ~P A -1-1-onto-> ~P A <-> ( F Fn ~P A /\ `' F Fn ~P A ) ) |
|
| 10 | 5 8 9 | sylanbrc | |- ( A e. V -> F : ~P A -1-1-onto-> ~P A ) |
| 11 | elpwi | |- ( b e. ~P A -> b C_ A ) |
|
| 12 | 11 | ad2antll | |- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> b C_ A ) |
| 13 | 1 | isf34lem1 | |- ( ( A e. V /\ b C_ A ) -> ( F ` b ) = ( A \ b ) ) |
| 14 | 12 13 | syldan | |- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( F ` b ) = ( A \ b ) ) |
| 15 | elpwi | |- ( a e. ~P A -> a C_ A ) |
|
| 16 | 15 | ad2antrl | |- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> a C_ A ) |
| 17 | 1 | isf34lem1 | |- ( ( A e. V /\ a C_ A ) -> ( F ` a ) = ( A \ a ) ) |
| 18 | 16 17 | syldan | |- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( F ` a ) = ( A \ a ) ) |
| 19 | 14 18 | psseq12d | |- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( ( F ` b ) C. ( F ` a ) <-> ( A \ b ) C. ( A \ a ) ) ) |
| 20 | difss | |- ( A \ a ) C_ A |
|
| 21 | pssdifcom1 | |- ( ( b C_ A /\ ( A \ a ) C_ A ) -> ( ( A \ b ) C. ( A \ a ) <-> ( A \ ( A \ a ) ) C. b ) ) |
|
| 22 | 12 20 21 | sylancl | |- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( ( A \ b ) C. ( A \ a ) <-> ( A \ ( A \ a ) ) C. b ) ) |
| 23 | dfss4 | |- ( a C_ A <-> ( A \ ( A \ a ) ) = a ) |
|
| 24 | 16 23 | sylib | |- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( A \ ( A \ a ) ) = a ) |
| 25 | 24 | psseq1d | |- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( ( A \ ( A \ a ) ) C. b <-> a C. b ) ) |
| 26 | 19 22 25 | 3bitrrd | |- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( a C. b <-> ( F ` b ) C. ( F ` a ) ) ) |
| 27 | vex | |- b e. _V |
|
| 28 | 27 | brrpss | |- ( a [C.] b <-> a C. b ) |
| 29 | fvex | |- ( F ` a ) e. _V |
|
| 30 | 29 | brrpss | |- ( ( F ` b ) [C.] ( F ` a ) <-> ( F ` b ) C. ( F ` a ) ) |
| 31 | 26 28 30 | 3bitr4g | |- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( a [C.] b <-> ( F ` b ) [C.] ( F ` a ) ) ) |
| 32 | relrpss | |- Rel [C.] |
|
| 33 | 32 | relbrcnv | |- ( ( F ` a ) `' [C.] ( F ` b ) <-> ( F ` b ) [C.] ( F ` a ) ) |
| 34 | 31 33 | bitr4di | |- ( ( A e. V /\ ( a e. ~P A /\ b e. ~P A ) ) -> ( a [C.] b <-> ( F ` a ) `' [C.] ( F ` b ) ) ) |
| 35 | 34 | ralrimivva | |- ( A e. V -> A. a e. ~P A A. b e. ~P A ( a [C.] b <-> ( F ` a ) `' [C.] ( F ` b ) ) ) |
| 36 | df-isom | |- ( F Isom [C.] , `' [C.] ( ~P A , ~P A ) <-> ( F : ~P A -1-1-onto-> ~P A /\ A. a e. ~P A A. b e. ~P A ( a [C.] b <-> ( F ` a ) `' [C.] ( F ` b ) ) ) ) |
|
| 37 | 10 35 36 | sylanbrc | |- ( A e. V -> F Isom [C.] , `' [C.] ( ~P A , ~P A ) ) |