This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comet.1 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| comet.2 | ⊢ ( 𝜑 → 𝐹 : ( 0 [,] +∞ ) ⟶ ℝ* ) | ||
| comet.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) | ||
| comet.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ) → ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) | ||
| comet.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ) → ( 𝐹 ‘ ( 𝑥 +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ) | ||
| Assertion | comet | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐷 ) ∈ ( ∞Met ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comet.1 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 2 | comet.2 | ⊢ ( 𝜑 → 𝐹 : ( 0 [,] +∞ ) ⟶ ℝ* ) | |
| 3 | comet.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] +∞ ) ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) | |
| 4 | comet.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ) → ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 5 | comet.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ) → ( 𝐹 ‘ ( 𝑥 +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ) | |
| 6 | 1 | elfvexd | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 7 | xmetf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 9 | 8 | ffnd | ⊢ ( 𝜑 → 𝐷 Fn ( 𝑋 × 𝑋 ) ) |
| 10 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑎 𝐷 𝑏 ) ∈ ℝ* ) | |
| 11 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → 0 ≤ ( 𝑎 𝐷 𝑏 ) ) | |
| 12 | elxrge0 | ⊢ ( ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑎 𝐷 𝑏 ) ∈ ℝ* ∧ 0 ≤ ( 𝑎 𝐷 𝑏 ) ) ) | |
| 13 | 10 11 12 | sylanbrc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
| 14 | 13 | 3expb | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
| 15 | 1 14 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
| 16 | 15 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
| 17 | ffnov | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] +∞ ) ↔ ( 𝐷 Fn ( 𝑋 × 𝑋 ) ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) ) | |
| 18 | 9 16 17 | sylanbrc | ⊢ ( 𝜑 → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] +∞ ) ) |
| 19 | 2 18 | fcod | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐷 ) : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 20 | opelxpi | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → 〈 𝑎 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) | |
| 21 | fvco3 | ⊢ ( ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑎 , 𝑏 〉 ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑎 , 𝑏 〉 ) ) ) | |
| 22 | 8 20 21 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑎 , 𝑏 〉 ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑎 , 𝑏 〉 ) ) ) |
| 23 | df-ov | ⊢ ( 𝑎 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑎 , 𝑏 〉 ) | |
| 24 | df-ov | ⊢ ( 𝑎 𝐷 𝑏 ) = ( 𝐷 ‘ 〈 𝑎 , 𝑏 〉 ) | |
| 25 | 24 | fveq2i | ⊢ ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑎 , 𝑏 〉 ) ) |
| 26 | 22 23 25 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ) |
| 27 | 26 | eqeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = 0 ↔ ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) = 0 ) ) |
| 28 | fveq2 | ⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ) | |
| 29 | 28 | eqeq1d | ⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) = 0 ) ) |
| 30 | eqeq1 | ⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( 𝑥 = 0 ↔ ( 𝑎 𝐷 𝑏 ) = 0 ) ) | |
| 31 | 29 30 | bibi12d | ⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) = 0 ↔ ( 𝑎 𝐷 𝑏 ) = 0 ) ) ) |
| 32 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
| 34 | 31 33 15 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) = 0 ↔ ( 𝑎 𝐷 𝑏 ) = 0 ) ) |
| 35 | xmeteq0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( ( 𝑎 𝐷 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) | |
| 36 | 35 | 3expb | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 𝐷 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
| 37 | 1 36 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 𝐷 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
| 38 | 27 34 37 | 3bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
| 39 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝐹 : ( 0 [,] +∞ ) ⟶ ℝ* ) |
| 40 | 15 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
| 41 | 39 40 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ∈ ℝ* ) |
| 42 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] +∞ ) ) |
| 43 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑐 ∈ 𝑋 ) | |
| 44 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑋 ) | |
| 45 | 42 43 44 | fovcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 𝐷 𝑎 ) ∈ ( 0 [,] +∞ ) ) |
| 46 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝑏 ∈ 𝑋 ) | |
| 47 | 42 43 46 | fovcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
| 48 | ge0xaddcl | ⊢ ( ( ( 𝑐 𝐷 𝑎 ) ∈ ( 0 [,] +∞ ) ∧ ( 𝑐 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) → ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ∈ ( 0 [,] +∞ ) ) | |
| 49 | 45 47 48 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ∈ ( 0 [,] +∞ ) ) |
| 50 | 39 49 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ∈ ℝ* ) |
| 51 | 39 45 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) ∈ ℝ* ) |
| 52 | 39 47 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ∈ ℝ* ) |
| 53 | 51 52 | xaddcld | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ∈ ℝ* ) |
| 54 | 3anrot | ⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ↔ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) | |
| 55 | xmettri2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) | |
| 56 | 54 55 | sylan2br | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) |
| 57 | 1 56 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) |
| 58 | 4 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 60 | breq1 | ⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑎 𝐷 𝑏 ) ≤ 𝑦 ) ) | |
| 61 | 28 | breq1d | ⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 62 | 60 61 | imbi12d | ⊢ ( 𝑥 = ( 𝑎 𝐷 𝑏 ) → ( ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑎 𝐷 𝑏 ) ≤ 𝑦 → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 63 | breq2 | ⊢ ( 𝑦 = ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( ( 𝑎 𝐷 𝑏 ) ≤ 𝑦 ↔ ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) | |
| 64 | fveq2 | ⊢ ( 𝑦 = ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) | |
| 65 | 64 | breq2d | ⊢ ( 𝑦 = ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) |
| 66 | 63 65 | imbi12d | ⊢ ( 𝑦 = ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( ( ( 𝑎 𝐷 𝑏 ) ≤ 𝑦 → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) ) |
| 67 | 62 66 | rspc2va | ⊢ ( ( ( ( 𝑎 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ∧ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ∈ ( 0 [,] +∞ ) ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) |
| 68 | 40 49 59 67 | syl21anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑎 𝐷 𝑏 ) ≤ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) ) |
| 69 | 57 68 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
| 70 | 5 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝐹 ‘ ( 𝑥 +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ) |
| 71 | 70 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝐹 ‘ ( 𝑥 +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ) |
| 72 | fvoveq1 | ⊢ ( 𝑥 = ( 𝑐 𝐷 𝑎 ) → ( 𝐹 ‘ ( 𝑥 +𝑒 𝑦 ) ) = ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 𝑦 ) ) ) | |
| 73 | fveq2 | ⊢ ( 𝑥 = ( 𝑐 𝐷 𝑎 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) ) | |
| 74 | 73 | oveq1d | ⊢ ( 𝑥 = ( 𝑐 𝐷 𝑎 ) → ( ( 𝐹 ‘ 𝑥 ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ) |
| 75 | 72 74 | breq12d | ⊢ ( 𝑥 = ( 𝑐 𝐷 𝑎 ) → ( ( 𝐹 ‘ ( 𝑥 +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 76 | oveq2 | ⊢ ( 𝑦 = ( 𝑐 𝐷 𝑏 ) → ( ( 𝑐 𝐷 𝑎 ) +𝑒 𝑦 ) = ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) | |
| 77 | 76 | fveq2d | ⊢ ( 𝑦 = ( 𝑐 𝐷 𝑏 ) → ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 𝑦 ) ) = ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ) |
| 78 | fveq2 | ⊢ ( 𝑦 = ( 𝑐 𝐷 𝑏 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) | |
| 79 | 78 | oveq2d | ⊢ ( 𝑦 = ( 𝑐 𝐷 𝑏 ) → ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) |
| 80 | 77 79 | breq12d | ⊢ ( 𝑦 = ( 𝑐 𝐷 𝑏 ) → ( ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) ) |
| 81 | 75 80 | rspc2va | ⊢ ( ( ( ( 𝑐 𝐷 𝑎 ) ∈ ( 0 [,] +∞ ) ∧ ( 𝑐 𝐷 𝑏 ) ∈ ( 0 [,] +∞ ) ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝐹 ‘ ( 𝑥 +𝑒 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) +𝑒 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) |
| 82 | 45 47 71 81 | syl21anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑐 𝐷 𝑎 ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) |
| 83 | 41 50 53 69 82 | xrletrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) |
| 84 | 26 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = ( 𝐹 ‘ ( 𝑎 𝐷 𝑏 ) ) ) |
| 85 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 86 | 43 44 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 〈 𝑐 , 𝑎 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 87 | 85 86 | fvco3d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑐 , 𝑎 〉 ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑐 , 𝑎 〉 ) ) ) |
| 88 | df-ov | ⊢ ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑎 ) = ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑐 , 𝑎 〉 ) | |
| 89 | df-ov | ⊢ ( 𝑐 𝐷 𝑎 ) = ( 𝐷 ‘ 〈 𝑐 , 𝑎 〉 ) | |
| 90 | 89 | fveq2i | ⊢ ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑐 , 𝑎 〉 ) ) |
| 91 | 87 88 90 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑎 ) = ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) ) |
| 92 | 43 46 | opelxpd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → 〈 𝑐 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 93 | 85 92 | fvco3d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑐 , 𝑏 〉 ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑐 , 𝑏 〉 ) ) ) |
| 94 | df-ov | ⊢ ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = ( ( 𝐹 ∘ 𝐷 ) ‘ 〈 𝑐 , 𝑏 〉 ) | |
| 95 | df-ov | ⊢ ( 𝑐 𝐷 𝑏 ) = ( 𝐷 ‘ 〈 𝑐 , 𝑏 〉 ) | |
| 96 | 95 | fveq2i | ⊢ ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) = ( 𝐹 ‘ ( 𝐷 ‘ 〈 𝑐 , 𝑏 〉 ) ) |
| 97 | 93 94 96 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑏 ) = ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) |
| 98 | 91 97 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑎 ) +𝑒 ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑐 𝐷 𝑎 ) ) +𝑒 ( 𝐹 ‘ ( 𝑐 𝐷 𝑏 ) ) ) ) |
| 99 | 83 84 98 | 3brtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 ( 𝐹 ∘ 𝐷 ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑎 ) +𝑒 ( 𝑐 ( 𝐹 ∘ 𝐷 ) 𝑏 ) ) ) |
| 100 | 6 19 38 99 | isxmetd | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐷 ) ∈ ( ∞Met ‘ 𝑋 ) ) |