This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | stdbdmet.1 | ⊢ 𝐷 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐶 𝑦 ) ≤ 𝑅 , ( 𝑥 𝐶 𝑦 ) , 𝑅 ) ) | |
| Assertion | stdbdmetval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = if ( ( 𝐴 𝐶 𝐵 ) ≤ 𝑅 , ( 𝐴 𝐶 𝐵 ) , 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdbdmet.1 | ⊢ 𝐷 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐶 𝑦 ) ≤ 𝑅 , ( 𝑥 𝐶 𝑦 ) , 𝑅 ) ) | |
| 2 | ovex | ⊢ ( 𝐴 𝐶 𝐵 ) ∈ V | |
| 3 | ifexg | ⊢ ( ( ( 𝐴 𝐶 𝐵 ) ∈ V ∧ 𝑅 ∈ 𝑉 ) → if ( ( 𝐴 𝐶 𝐵 ) ≤ 𝑅 , ( 𝐴 𝐶 𝐵 ) , 𝑅 ) ∈ V ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝑅 ∈ 𝑉 → if ( ( 𝐴 𝐶 𝐵 ) ≤ 𝑅 , ( 𝐴 𝐶 𝐵 ) , 𝑅 ) ∈ V ) |
| 5 | oveq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 𝐶 𝑦 ) = ( 𝐴 𝐶 𝐵 ) ) | |
| 6 | 5 | breq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 𝐶 𝑦 ) ≤ 𝑅 ↔ ( 𝐴 𝐶 𝐵 ) ≤ 𝑅 ) ) |
| 7 | 6 5 | ifbieq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( ( 𝑥 𝐶 𝑦 ) ≤ 𝑅 , ( 𝑥 𝐶 𝑦 ) , 𝑅 ) = if ( ( 𝐴 𝐶 𝐵 ) ≤ 𝑅 , ( 𝐴 𝐶 𝐵 ) , 𝑅 ) ) |
| 8 | 7 1 | ovmpoga | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ if ( ( 𝐴 𝐶 𝐵 ) ≤ 𝑅 , ( 𝐴 𝐶 𝐵 ) , 𝑅 ) ∈ V ) → ( 𝐴 𝐷 𝐵 ) = if ( ( 𝐴 𝐶 𝐵 ) ≤ 𝑅 , ( 𝐴 𝐶 𝐵 ) , 𝑅 ) ) |
| 9 | 4 8 | syl3an3 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝑅 ∈ 𝑉 ) → ( 𝐴 𝐷 𝐵 ) = if ( ( 𝐴 𝐶 𝐵 ) ≤ 𝑅 , ( 𝐴 𝐶 𝐵 ) , 𝑅 ) ) |
| 10 | 9 | 3comr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = if ( ( 𝐴 𝐶 𝐵 ) ≤ 𝑅 , ( 𝐴 𝐶 𝐵 ) , 𝑅 ) ) |