This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt21.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmpt21.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmpt2c.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | ||
| cnmpt2c.p | ⊢ ( 𝜑 → 𝑃 ∈ 𝑍 ) | ||
| Assertion | cnmpt2c | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑃 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmpt21.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmpt2c.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | |
| 4 | cnmpt2c.p | ⊢ ( 𝜑 → 𝑃 ∈ 𝑍 ) | |
| 5 | eqidd | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → 𝑃 = 𝑃 ) | |
| 6 | 5 | mpompt | ⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 𝑃 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑃 ) |
| 7 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 8 | 1 2 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 9 | 8 3 4 | cnmptc | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 𝑃 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |
| 10 | 6 9 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑃 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |