This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt21.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmpt21.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmpt21.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | ||
| cnmpt2t.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) | ||
| cnmpt22.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | ||
| cnmpt22.m | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑊 ) ) | ||
| cnmpt22.c | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝑁 ) ) | ||
| cnmpt22.d | ⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝐶 = 𝐷 ) | ||
| Assertion | cnmpt22 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐷 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt21.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmpt21.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmpt21.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) | |
| 4 | cnmpt2t.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) | |
| 5 | cnmpt22.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | |
| 6 | cnmpt22.m | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑊 ) ) | |
| 7 | cnmpt22.c | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝑁 ) ) | |
| 8 | cnmpt22.d | ⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝐶 = 𝐷 ) | |
| 9 | df-ov | ⊢ ( 𝐴 ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) 𝐵 ) = ( ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 10 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 11 | 1 2 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 12 | cnf2 | ⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) | |
| 13 | 11 5 3 12 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) |
| 14 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 15 | 14 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) |
| 16 | 13 15 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ) |
| 17 | rsp2 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑍 ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑍 ) ) |
| 19 | 18 | 3impib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ 𝑍 ) |
| 20 | cnf2 | ⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝑀 ∈ ( TopOn ‘ 𝑊 ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑀 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑊 ) | |
| 21 | 11 6 4 20 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑊 ) |
| 22 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) | |
| 23 | 22 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ 𝑊 ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ 𝑊 ) |
| 24 | 21 23 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ 𝑊 ) |
| 25 | rsp2 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ 𝑊 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ 𝑊 ) ) | |
| 26 | 24 25 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ 𝑊 ) ) |
| 27 | 26 | 3impib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ 𝑊 ) |
| 28 | 19 27 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ) ) |
| 29 | txtopon | ⊢ ( ( 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ 𝑀 ∈ ( TopOn ‘ 𝑊 ) ) → ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑍 × 𝑊 ) ) ) | |
| 30 | 5 6 29 | syl2anc | ⊢ ( 𝜑 → ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑍 × 𝑊 ) ) ) |
| 31 | cntop2 | ⊢ ( ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝑁 ) → 𝑁 ∈ Top ) | |
| 32 | 7 31 | syl | ⊢ ( 𝜑 → 𝑁 ∈ Top ) |
| 33 | toptopon2 | ⊢ ( 𝑁 ∈ Top ↔ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) | |
| 34 | 32 33 | sylib | ⊢ ( 𝜑 → 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) |
| 35 | cnf2 | ⊢ ( ( ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑍 × 𝑊 ) ) ∧ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ∧ ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝑁 ) ) → ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) : ( 𝑍 × 𝑊 ) ⟶ ∪ 𝑁 ) | |
| 36 | 30 34 7 35 | syl3anc | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) : ( 𝑍 × 𝑊 ) ⟶ ∪ 𝑁 ) |
| 37 | eqid | ⊢ ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) = ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) | |
| 38 | 37 | fmpo | ⊢ ( ∀ 𝑧 ∈ 𝑍 ∀ 𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁 ↔ ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) : ( 𝑍 × 𝑊 ) ⟶ ∪ 𝑁 ) |
| 39 | 36 38 | sylibr | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑍 ∀ 𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁 ) |
| 40 | r2al | ⊢ ( ∀ 𝑧 ∈ 𝑍 ∀ 𝑤 ∈ 𝑊 𝐶 ∈ ∪ 𝑁 ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊 ) → 𝐶 ∈ ∪ 𝑁 ) ) | |
| 41 | 39 40 | sylib | ⊢ ( 𝜑 → ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊 ) → 𝐶 ∈ ∪ 𝑁 ) ) |
| 42 | 41 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊 ) → 𝐶 ∈ ∪ 𝑁 ) ) |
| 43 | eleq1 | ⊢ ( 𝑧 = 𝐴 → ( 𝑧 ∈ 𝑍 ↔ 𝐴 ∈ 𝑍 ) ) | |
| 44 | eleq1 | ⊢ ( 𝑤 = 𝐵 → ( 𝑤 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊 ) ) | |
| 45 | 43 44 | bi2anan9 | ⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → ( ( 𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊 ) ↔ ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ) ) ) |
| 46 | 8 | eleq1d | ⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → ( 𝐶 ∈ ∪ 𝑁 ↔ 𝐷 ∈ ∪ 𝑁 ) ) |
| 47 | 45 46 | imbi12d | ⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → ( ( ( 𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊 ) → 𝐶 ∈ ∪ 𝑁 ) ↔ ( ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ) → 𝐷 ∈ ∪ 𝑁 ) ) ) |
| 48 | 47 | spc2gv | ⊢ ( ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑍 ∧ 𝑤 ∈ 𝑊 ) → 𝐶 ∈ ∪ 𝑁 ) → ( ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ) → 𝐷 ∈ ∪ 𝑁 ) ) ) |
| 49 | 28 42 28 48 | syl3c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐷 ∈ ∪ 𝑁 ) |
| 50 | 8 37 | ovmpoga | ⊢ ( ( 𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑊 ∧ 𝐷 ∈ ∪ 𝑁 ) → ( 𝐴 ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) 𝐵 ) = 𝐷 ) |
| 51 | 19 27 49 50 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) 𝐵 ) = 𝐷 ) |
| 52 | 9 51 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐷 ) |
| 53 | 52 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐷 ) ) |
| 54 | 1 2 3 4 | cnmpt2t | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn ( 𝐿 ×t 𝑀 ) ) ) |
| 55 | 1 2 54 7 | cnmpt21f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( 𝑧 ∈ 𝑍 , 𝑤 ∈ 𝑊 ↦ 𝐶 ) ‘ 〈 𝐴 , 𝐵 〉 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) ) |
| 56 | 53 55 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐷 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) ) |