This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnrehmeo as of 9-Apr-2025. (Contributed by Mario Carneiro, 25-Aug-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnrehmeoOLD.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) | |
| cnrehmeoOLD.2 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | ||
| cnrehmeoOLD.3 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | cnrehmeoOLD | ⊢ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrehmeoOLD.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 2 | cnrehmeoOLD.2 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| 3 | cnrehmeoOLD.3 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 4 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 5 | 2 4 | eqeltri | ⊢ 𝐽 ∈ ( TopOn ‘ ℝ ) |
| 6 | 5 | a1i | ⊢ ( ⊤ → 𝐽 ∈ ( TopOn ‘ ℝ ) ) |
| 7 | 3 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 8 | cnrest2r | ⊢ ( 𝐾 ∈ Top → ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) | |
| 9 | 7 8 | mp1i | ⊢ ( ⊤ → ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 10 | 6 6 | cnmpt1st | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 11 | 3 | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( 𝐾 ↾t ℝ ) |
| 12 | 2 11 | eqtri | ⊢ 𝐽 = ( 𝐾 ↾t ℝ ) |
| 13 | 12 | oveq2i | ⊢ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) = ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) |
| 14 | 10 13 | eleqtrdi | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ) |
| 15 | 9 14 | sseldd | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 16 | 3 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 17 | 16 | a1i | ⊢ ( ⊤ → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 18 | ax-icn | ⊢ i ∈ ℂ | |
| 19 | 18 | a1i | ⊢ ( ⊤ → i ∈ ℂ ) |
| 20 | 6 6 17 19 | cnmpt2c | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ i ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 21 | 6 6 | cnmpt2nd | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 22 | 21 13 | eleqtrdi | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( 𝐾 ↾t ℝ ) ) ) |
| 23 | 9 22 | sseldd | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 24 | 3 | mulcn | ⊢ · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 25 | 24 | a1i | ⊢ ( ⊤ → · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 26 | 6 6 20 23 25 | cnmpt22f | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( i · 𝑦 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 27 | 3 | addcn | ⊢ + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 28 | 27 | a1i | ⊢ ( ⊤ → + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 29 | 6 6 15 26 28 | cnmpt22f | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 30 | 1 29 | eqeltrid | ⊢ ( ⊤ → 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| 31 | 1 | cnrecnv | ⊢ ◡ 𝐹 = ( 𝑧 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |
| 32 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 33 | 32 | a1i | ⊢ ( ⊤ → ℜ : ℂ ⟶ ℝ ) |
| 34 | 33 | feqmptd | ⊢ ( ⊤ → ℜ = ( 𝑧 ∈ ℂ ↦ ( ℜ ‘ 𝑧 ) ) ) |
| 35 | recncf | ⊢ ℜ ∈ ( ℂ –cn→ ℝ ) | |
| 36 | ssid | ⊢ ℂ ⊆ ℂ | |
| 37 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 38 | 16 | toponrestid | ⊢ 𝐾 = ( 𝐾 ↾t ℂ ) |
| 39 | 3 38 12 | cncfcn | ⊢ ( ( ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( ℂ –cn→ ℝ ) = ( 𝐾 Cn 𝐽 ) ) |
| 40 | 36 37 39 | mp2an | ⊢ ( ℂ –cn→ ℝ ) = ( 𝐾 Cn 𝐽 ) |
| 41 | 35 40 | eleqtri | ⊢ ℜ ∈ ( 𝐾 Cn 𝐽 ) |
| 42 | 34 41 | eqeltrrdi | ⊢ ( ⊤ → ( 𝑧 ∈ ℂ ↦ ( ℜ ‘ 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) ) |
| 43 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 44 | 43 | a1i | ⊢ ( ⊤ → ℑ : ℂ ⟶ ℝ ) |
| 45 | 44 | feqmptd | ⊢ ( ⊤ → ℑ = ( 𝑧 ∈ ℂ ↦ ( ℑ ‘ 𝑧 ) ) ) |
| 46 | imcncf | ⊢ ℑ ∈ ( ℂ –cn→ ℝ ) | |
| 47 | 46 40 | eleqtri | ⊢ ℑ ∈ ( 𝐾 Cn 𝐽 ) |
| 48 | 45 47 | eqeltrrdi | ⊢ ( ⊤ → ( 𝑧 ∈ ℂ ↦ ( ℑ ‘ 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) ) |
| 49 | 17 42 48 | cnmpt1t | ⊢ ( ⊤ → ( 𝑧 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) ∈ ( 𝐾 Cn ( 𝐽 ×t 𝐽 ) ) ) |
| 50 | 31 49 | eqeltrid | ⊢ ( ⊤ → ◡ 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ×t 𝐽 ) ) ) |
| 51 | ishmeo | ⊢ ( 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo 𝐾 ) ↔ ( 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ∧ ◡ 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ×t 𝐽 ) ) ) ) | |
| 52 | 30 50 51 | sylanbrc | ⊢ ( ⊤ → 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo 𝐾 ) ) |
| 53 | 52 | mptru | ⊢ 𝐹 ∈ ( ( 𝐽 ×t 𝐽 ) Homeo 𝐾 ) |