This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of cnprest under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnprest.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | cnpresti | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( ( 𝐽 ↾t 𝐴 ) CnP 𝐾 ) ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnprest.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1 2 | cnpf | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 5 | simp1 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐴 ⊆ 𝑋 ) | |
| 6 | 4 5 | fssresd | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ∪ 𝐾 ) |
| 7 | simpl2 | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑦 ∈ 𝐾 ) → 𝑃 ∈ 𝐴 ) | |
| 8 | 7 | fvresd | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑦 ∈ 𝐾 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) = ( 𝐹 ‘ 𝑃 ) ) |
| 9 | 8 | eleq1d | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑦 ∈ 𝐾 ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) ∈ 𝑦 ↔ ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ) ) |
| 10 | cnpimaex | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝑦 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) | |
| 11 | 10 | 3expia | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝑦 ∈ 𝐾 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) |
| 12 | 11 | 3ad2antl3 | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑦 ∈ 𝐾 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) |
| 13 | idd | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝑃 ∈ 𝑥 → 𝑃 ∈ 𝑥 ) ) | |
| 14 | simp2 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝑃 ∈ 𝐴 ) | |
| 15 | 13 14 | jctird | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝑃 ∈ 𝑥 → ( 𝑃 ∈ 𝑥 ∧ 𝑃 ∈ 𝐴 ) ) ) |
| 16 | elin | ⊢ ( 𝑃 ∈ ( 𝑥 ∩ 𝐴 ) ↔ ( 𝑃 ∈ 𝑥 ∧ 𝑃 ∈ 𝐴 ) ) | |
| 17 | 15 16 | imbitrrdi | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝑃 ∈ 𝑥 → 𝑃 ∈ ( 𝑥 ∩ 𝐴 ) ) ) |
| 18 | inss1 | ⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 | |
| 19 | imass2 | ⊢ ( ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 → ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ ( 𝐹 “ 𝑥 ) ) | |
| 20 | 18 19 | ax-mp | ⊢ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ ( 𝐹 “ 𝑥 ) |
| 21 | id | ⊢ ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) | |
| 22 | 20 21 | sstrid | ⊢ ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) |
| 23 | 17 22 | anim12d1 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ( 𝑃 ∈ ( 𝑥 ∩ 𝐴 ) ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) ) |
| 24 | 23 | reximdv | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ ( 𝑥 ∩ 𝐴 ) ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) ) |
| 25 | vex | ⊢ 𝑥 ∈ V | |
| 26 | 25 | inex1 | ⊢ ( 𝑥 ∩ 𝐴 ) ∈ V |
| 27 | 26 | a1i | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∩ 𝐴 ) ∈ V ) |
| 28 | cnptop1 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐽 ∈ Top ) | |
| 29 | 28 | 3ad2ant3 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐽 ∈ Top ) |
| 30 | 29 | uniexd | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ∪ 𝐽 ∈ V ) |
| 31 | 5 1 | sseqtrdi | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐴 ⊆ ∪ 𝐽 ) |
| 32 | 30 31 | ssexd | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐴 ∈ V ) |
| 33 | elrest | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) → ( 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐽 𝑧 = ( 𝑥 ∩ 𝐴 ) ) ) | |
| 34 | 29 32 33 | syl2anc | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐽 𝑧 = ( 𝑥 ∩ 𝐴 ) ) ) |
| 35 | simpr | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑧 = ( 𝑥 ∩ 𝐴 ) ) → 𝑧 = ( 𝑥 ∩ 𝐴 ) ) | |
| 36 | 35 | eleq2d | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑧 = ( 𝑥 ∩ 𝐴 ) ) → ( 𝑃 ∈ 𝑧 ↔ 𝑃 ∈ ( 𝑥 ∩ 𝐴 ) ) ) |
| 37 | 35 | imaeq2d | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑧 = ( 𝑥 ∩ 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) = ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑥 ∩ 𝐴 ) ) ) |
| 38 | inss2 | ⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 | |
| 39 | resima2 | ⊢ ( ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑥 ∩ 𝐴 ) ) = ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ) | |
| 40 | 38 39 | ax-mp | ⊢ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑥 ∩ 𝐴 ) ) = ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) |
| 41 | 37 40 | eqtrdi | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑧 = ( 𝑥 ∩ 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) = ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ) |
| 42 | 41 | sseq1d | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑧 = ( 𝑥 ∩ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ↔ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) |
| 43 | 36 42 | anbi12d | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑧 = ( 𝑥 ∩ 𝐴 ) ) → ( ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ↔ ( 𝑃 ∈ ( 𝑥 ∩ 𝐴 ) ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) ) |
| 44 | 27 34 43 | rexxfr2d | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ ( 𝑥 ∩ 𝐴 ) ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) ) |
| 45 | 24 44 | sylibrd | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑦 ∈ 𝐾 ) → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) |
| 47 | 12 46 | syld | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑦 ∈ 𝐾 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) |
| 48 | 9 47 | sylbid | ⊢ ( ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ 𝑦 ∈ 𝐾 ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) |
| 49 | 48 | ralrimiva | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ∀ 𝑦 ∈ 𝐾 ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) |
| 50 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 51 | 29 50 | sylib | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 52 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) | |
| 53 | 51 5 52 | syl2anc | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 54 | cnptop2 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐾 ∈ Top ) | |
| 55 | 54 | 3ad2ant3 | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐾 ∈ Top ) |
| 56 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 57 | 55 56 | sylib | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 58 | iscnp | ⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( ( 𝐽 ↾t 𝐴 ) CnP 𝐾 ) ‘ 𝑃 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ∪ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) ) ) | |
| 59 | 53 57 14 58 | syl3anc | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( ( 𝐽 ↾t 𝐴 ) CnP 𝐾 ) ‘ 𝑃 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ∪ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) ) ) |
| 60 | 6 49 59 | mpbir2and | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( ( 𝐽 ↾t 𝐴 ) CnP 𝐾 ) ‘ 𝑃 ) ) |