This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of cnprest under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnprest.1 | |- X = U. J |
|
| Assertion | cnpresti | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> ( F |` A ) e. ( ( ( J |`t A ) CnP K ) ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnprest.1 | |- X = U. J |
|
| 2 | eqid | |- U. K = U. K |
|
| 3 | 1 2 | cnpf | |- ( F e. ( ( J CnP K ) ` P ) -> F : X --> U. K ) |
| 4 | 3 | 3ad2ant3 | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> F : X --> U. K ) |
| 5 | simp1 | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> A C_ X ) |
|
| 6 | 4 5 | fssresd | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> ( F |` A ) : A --> U. K ) |
| 7 | simpl2 | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ y e. K ) -> P e. A ) |
|
| 8 | 7 | fvresd | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ y e. K ) -> ( ( F |` A ) ` P ) = ( F ` P ) ) |
| 9 | 8 | eleq1d | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ y e. K ) -> ( ( ( F |` A ) ` P ) e. y <-> ( F ` P ) e. y ) ) |
| 10 | cnpimaex | |- ( ( F e. ( ( J CnP K ) ` P ) /\ y e. K /\ ( F ` P ) e. y ) -> E. x e. J ( P e. x /\ ( F " x ) C_ y ) ) |
|
| 11 | 10 | 3expia | |- ( ( F e. ( ( J CnP K ) ` P ) /\ y e. K ) -> ( ( F ` P ) e. y -> E. x e. J ( P e. x /\ ( F " x ) C_ y ) ) ) |
| 12 | 11 | 3ad2antl3 | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ y e. K ) -> ( ( F ` P ) e. y -> E. x e. J ( P e. x /\ ( F " x ) C_ y ) ) ) |
| 13 | idd | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> ( P e. x -> P e. x ) ) |
|
| 14 | simp2 | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> P e. A ) |
|
| 15 | 13 14 | jctird | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> ( P e. x -> ( P e. x /\ P e. A ) ) ) |
| 16 | elin | |- ( P e. ( x i^i A ) <-> ( P e. x /\ P e. A ) ) |
|
| 17 | 15 16 | imbitrrdi | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> ( P e. x -> P e. ( x i^i A ) ) ) |
| 18 | inss1 | |- ( x i^i A ) C_ x |
|
| 19 | imass2 | |- ( ( x i^i A ) C_ x -> ( F " ( x i^i A ) ) C_ ( F " x ) ) |
|
| 20 | 18 19 | ax-mp | |- ( F " ( x i^i A ) ) C_ ( F " x ) |
| 21 | id | |- ( ( F " x ) C_ y -> ( F " x ) C_ y ) |
|
| 22 | 20 21 | sstrid | |- ( ( F " x ) C_ y -> ( F " ( x i^i A ) ) C_ y ) |
| 23 | 17 22 | anim12d1 | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> ( ( P e. x /\ ( F " x ) C_ y ) -> ( P e. ( x i^i A ) /\ ( F " ( x i^i A ) ) C_ y ) ) ) |
| 24 | 23 | reximdv | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> ( E. x e. J ( P e. x /\ ( F " x ) C_ y ) -> E. x e. J ( P e. ( x i^i A ) /\ ( F " ( x i^i A ) ) C_ y ) ) ) |
| 25 | vex | |- x e. _V |
|
| 26 | 25 | inex1 | |- ( x i^i A ) e. _V |
| 27 | 26 | a1i | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ x e. J ) -> ( x i^i A ) e. _V ) |
| 28 | cnptop1 | |- ( F e. ( ( J CnP K ) ` P ) -> J e. Top ) |
|
| 29 | 28 | 3ad2ant3 | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> J e. Top ) |
| 30 | 29 | uniexd | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> U. J e. _V ) |
| 31 | 5 1 | sseqtrdi | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> A C_ U. J ) |
| 32 | 30 31 | ssexd | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> A e. _V ) |
| 33 | elrest | |- ( ( J e. Top /\ A e. _V ) -> ( z e. ( J |`t A ) <-> E. x e. J z = ( x i^i A ) ) ) |
|
| 34 | 29 32 33 | syl2anc | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> ( z e. ( J |`t A ) <-> E. x e. J z = ( x i^i A ) ) ) |
| 35 | simpr | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ z = ( x i^i A ) ) -> z = ( x i^i A ) ) |
|
| 36 | 35 | eleq2d | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ z = ( x i^i A ) ) -> ( P e. z <-> P e. ( x i^i A ) ) ) |
| 37 | 35 | imaeq2d | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ z = ( x i^i A ) ) -> ( ( F |` A ) " z ) = ( ( F |` A ) " ( x i^i A ) ) ) |
| 38 | inss2 | |- ( x i^i A ) C_ A |
|
| 39 | resima2 | |- ( ( x i^i A ) C_ A -> ( ( F |` A ) " ( x i^i A ) ) = ( F " ( x i^i A ) ) ) |
|
| 40 | 38 39 | ax-mp | |- ( ( F |` A ) " ( x i^i A ) ) = ( F " ( x i^i A ) ) |
| 41 | 37 40 | eqtrdi | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ z = ( x i^i A ) ) -> ( ( F |` A ) " z ) = ( F " ( x i^i A ) ) ) |
| 42 | 41 | sseq1d | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ z = ( x i^i A ) ) -> ( ( ( F |` A ) " z ) C_ y <-> ( F " ( x i^i A ) ) C_ y ) ) |
| 43 | 36 42 | anbi12d | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ z = ( x i^i A ) ) -> ( ( P e. z /\ ( ( F |` A ) " z ) C_ y ) <-> ( P e. ( x i^i A ) /\ ( F " ( x i^i A ) ) C_ y ) ) ) |
| 44 | 27 34 43 | rexxfr2d | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> ( E. z e. ( J |`t A ) ( P e. z /\ ( ( F |` A ) " z ) C_ y ) <-> E. x e. J ( P e. ( x i^i A ) /\ ( F " ( x i^i A ) ) C_ y ) ) ) |
| 45 | 24 44 | sylibrd | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> ( E. x e. J ( P e. x /\ ( F " x ) C_ y ) -> E. z e. ( J |`t A ) ( P e. z /\ ( ( F |` A ) " z ) C_ y ) ) ) |
| 46 | 45 | adantr | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ y e. K ) -> ( E. x e. J ( P e. x /\ ( F " x ) C_ y ) -> E. z e. ( J |`t A ) ( P e. z /\ ( ( F |` A ) " z ) C_ y ) ) ) |
| 47 | 12 46 | syld | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ y e. K ) -> ( ( F ` P ) e. y -> E. z e. ( J |`t A ) ( P e. z /\ ( ( F |` A ) " z ) C_ y ) ) ) |
| 48 | 9 47 | sylbid | |- ( ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) /\ y e. K ) -> ( ( ( F |` A ) ` P ) e. y -> E. z e. ( J |`t A ) ( P e. z /\ ( ( F |` A ) " z ) C_ y ) ) ) |
| 49 | 48 | ralrimiva | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> A. y e. K ( ( ( F |` A ) ` P ) e. y -> E. z e. ( J |`t A ) ( P e. z /\ ( ( F |` A ) " z ) C_ y ) ) ) |
| 50 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 51 | 29 50 | sylib | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> J e. ( TopOn ` X ) ) |
| 52 | resttopon | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
|
| 53 | 51 5 52 | syl2anc | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
| 54 | cnptop2 | |- ( F e. ( ( J CnP K ) ` P ) -> K e. Top ) |
|
| 55 | 54 | 3ad2ant3 | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> K e. Top ) |
| 56 | 2 | toptopon | |- ( K e. Top <-> K e. ( TopOn ` U. K ) ) |
| 57 | 55 56 | sylib | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> K e. ( TopOn ` U. K ) ) |
| 58 | iscnp | |- ( ( ( J |`t A ) e. ( TopOn ` A ) /\ K e. ( TopOn ` U. K ) /\ P e. A ) -> ( ( F |` A ) e. ( ( ( J |`t A ) CnP K ) ` P ) <-> ( ( F |` A ) : A --> U. K /\ A. y e. K ( ( ( F |` A ) ` P ) e. y -> E. z e. ( J |`t A ) ( P e. z /\ ( ( F |` A ) " z ) C_ y ) ) ) ) ) |
|
| 59 | 53 57 14 58 | syl3anc | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> ( ( F |` A ) e. ( ( ( J |`t A ) CnP K ) ` P ) <-> ( ( F |` A ) : A --> U. K /\ A. y e. K ( ( ( F |` A ) ` P ) e. y -> E. z e. ( J |`t A ) ( P e. z /\ ( ( F |` A ) " z ) C_ y ) ) ) ) ) |
| 60 | 6 49 59 | mpbir2and | |- ( ( A C_ X /\ P e. A /\ F e. ( ( J CnP K ) ` P ) ) -> ( F |` A ) e. ( ( ( J |`t A ) CnP K ) ` P ) ) |