This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extension by continuity. Proposition 11 of BourbakiTop1 p. II.20. Given a topology J on X , a subset A dense in X , this states a condition for F from A to a space Y Hausdorff and complete to be extensible by continuity. (Contributed by Thierry Arnoux, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextucn.x | ⊢ 𝑋 = ( Base ‘ 𝑉 ) | |
| cnextucn.y | ⊢ 𝑌 = ( Base ‘ 𝑊 ) | ||
| cnextucn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑉 ) | ||
| cnextucn.k | ⊢ 𝐾 = ( TopOpen ‘ 𝑊 ) | ||
| cnextucn.u | ⊢ 𝑈 = ( UnifSt ‘ 𝑊 ) | ||
| cnextucn.v | ⊢ ( 𝜑 → 𝑉 ∈ TopSp ) | ||
| cnextucn.t | ⊢ ( 𝜑 → 𝑊 ∈ TopSp ) | ||
| cnextucn.w | ⊢ ( 𝜑 → 𝑊 ∈ CUnifSp ) | ||
| cnextucn.h | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | ||
| cnextucn.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | ||
| cnextucn.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑌 ) | ||
| cnextucn.c | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) | ||
| cnextucn.l | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( CauFilu ‘ 𝑈 ) ) | ||
| Assertion | cnextucn | ⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextucn.x | ⊢ 𝑋 = ( Base ‘ 𝑉 ) | |
| 2 | cnextucn.y | ⊢ 𝑌 = ( Base ‘ 𝑊 ) | |
| 3 | cnextucn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑉 ) | |
| 4 | cnextucn.k | ⊢ 𝐾 = ( TopOpen ‘ 𝑊 ) | |
| 5 | cnextucn.u | ⊢ 𝑈 = ( UnifSt ‘ 𝑊 ) | |
| 6 | cnextucn.v | ⊢ ( 𝜑 → 𝑉 ∈ TopSp ) | |
| 7 | cnextucn.t | ⊢ ( 𝜑 → 𝑊 ∈ TopSp ) | |
| 8 | cnextucn.w | ⊢ ( 𝜑 → 𝑊 ∈ CUnifSp ) | |
| 9 | cnextucn.h | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | |
| 10 | cnextucn.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | |
| 11 | cnextucn.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑌 ) | |
| 12 | cnextucn.c | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) | |
| 13 | cnextucn.l | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( CauFilu ‘ 𝑈 ) ) | |
| 14 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 15 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 16 | 3 | tpstop | ⊢ ( 𝑉 ∈ TopSp → 𝐽 ∈ Top ) |
| 17 | 6 16 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 18 | 2 4 | tpsuni | ⊢ ( 𝑊 ∈ TopSp → 𝑌 = ∪ 𝐾 ) |
| 19 | 7 18 | syl | ⊢ ( 𝜑 → 𝑌 = ∪ 𝐾 ) |
| 20 | 19 | feq3d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝑌 ↔ 𝐹 : 𝐴 ⟶ ∪ 𝐾 ) ) |
| 21 | 11 20 | mpbid | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ∪ 𝐾 ) |
| 22 | 1 3 | tpsuni | ⊢ ( 𝑉 ∈ TopSp → 𝑋 = ∪ 𝐽 ) |
| 23 | 6 22 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 24 | 10 23 | sseqtrd | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐽 ) |
| 25 | 12 23 | eqtrd | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = ∪ 𝐽 ) |
| 26 | 2 4 | istps | ⊢ ( 𝑊 ∈ TopSp ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 27 | 7 26 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 29 | 23 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝐽 ) ) |
| 30 | 29 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑥 ∈ 𝑋 ) |
| 31 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) |
| 32 | 30 31 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 33 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 34 | 17 33 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 35 | fveq2 | ⊢ ( 𝑋 = ∪ 𝐽 → ( TopOn ‘ 𝑋 ) = ( TopOn ‘ ∪ 𝐽 ) ) | |
| 36 | 35 | eleq2d | ⊢ ( 𝑋 = ∪ 𝐽 → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) ) |
| 37 | 23 36 | syl | ⊢ ( 𝜑 → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) ) |
| 38 | 34 37 | mpbird | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 40 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐴 ⊆ 𝑋 ) |
| 41 | trnei | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) | |
| 42 | 39 40 30 41 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |
| 43 | 32 42 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
| 44 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐹 : 𝐴 ⟶ 𝑌 ) |
| 45 | flfval | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝑌 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( 𝐾 fLim ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ) ) | |
| 46 | 28 43 44 45 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( 𝐾 fLim ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ) ) |
| 47 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑊 ∈ CUnifSp ) |
| 48 | 30 13 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( CauFilu ‘ 𝑈 ) ) |
| 49 | 5 | fveq2i | ⊢ ( CauFilu ‘ 𝑈 ) = ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) |
| 50 | 48 49 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ) |
| 51 | 2 | fvexi | ⊢ 𝑌 ∈ V |
| 52 | filfbas | ⊢ ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) | |
| 53 | 43 52 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) |
| 54 | fmfil | ⊢ ( ( 𝑌 ∈ V ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝑌 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( Fil ‘ 𝑌 ) ) | |
| 55 | 51 53 44 54 | mp3an2i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( Fil ‘ 𝑌 ) ) |
| 56 | 2 4 | cuspcvg | ⊢ ( ( 𝑊 ∈ CUnifSp ∧ ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ∧ ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐾 fLim ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ) ≠ ∅ ) |
| 57 | 47 50 55 56 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝐾 fLim ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ) ≠ ∅ ) |
| 58 | 46 57 | eqnetrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) |
| 59 | cuspusp | ⊢ ( 𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp ) | |
| 60 | 8 59 | syl | ⊢ ( 𝜑 → 𝑊 ∈ UnifSp ) |
| 61 | 4 | uspreg | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐾 ∈ Haus ) → 𝐾 ∈ Reg ) |
| 62 | 60 9 61 | syl2anc | ⊢ ( 𝜑 → 𝐾 ∈ Reg ) |
| 63 | 14 15 17 9 21 24 25 58 62 | cnextcn | ⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) |