This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping filter is a filter. (Contributed by Jeff Hankins, 18-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmfil | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ∈ ( Fil ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmval | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) = ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ) | |
| 2 | eqid | ⊢ ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) = ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) | |
| 3 | 2 | fbasrn | ⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑋 ∈ 𝐴 ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 4 | 3 | 3comr | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 5 | fgcl | ⊢ ( ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑋 filGen ran ( 𝑦 ∈ 𝐵 ↦ ( 𝐹 “ 𝑦 ) ) ) ∈ ( Fil ‘ 𝑋 ) ) |
| 7 | 1 6 | eqeltrd | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ∈ ( Fil ‘ 𝑋 ) ) |