This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a uniform space is Hausdorff, it is regular. Proposition 3 of BourbakiTop1 p. II.5. (Contributed by Thierry Arnoux, 4-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uspreg.1 | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| Assertion | uspreg | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus ) → 𝐽 ∈ Reg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspreg.1 | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( UnifSt ‘ 𝑊 ) = ( UnifSt ‘ 𝑊 ) | |
| 4 | 2 3 1 | isusp | ⊢ ( 𝑊 ∈ UnifSp ↔ ( ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑊 ) ) ∧ 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ) ) |
| 5 | 4 | simprbi | ⊢ ( 𝑊 ∈ UnifSp → 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus ) → 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ) |
| 7 | 4 | simplbi | ⊢ ( 𝑊 ∈ UnifSp → ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 8 | simpr | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus ) → 𝐽 ∈ Haus ) | |
| 9 | 6 8 | eqeltrrd | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus ) → ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ∈ Haus ) |
| 10 | eqid | ⊢ ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) = ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) | |
| 11 | 10 | utopreg | ⊢ ( ( ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ∈ Haus ) → ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ∈ Reg ) |
| 12 | 7 9 11 | syl2an2r | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus ) → ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ∈ Reg ) |
| 13 | 6 12 | eqeltrd | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐽 ∈ Haus ) → 𝐽 ∈ Reg ) |