This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a complete uniform space, any Cauchy filter C has a limit. (Contributed by Thierry Arnoux, 3-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cuspcvg.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| cuspcvg.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| Assertion | cuspcvg | ⊢ ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cuspcvg.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | cuspcvg.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 3 | eleq1 | ⊢ ( 𝑐 = 𝐶 → ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ↔ 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ) ) | |
| 4 | 2 | eqcomi | ⊢ ( TopOpen ‘ 𝑊 ) = 𝐽 |
| 5 | 4 | a1i | ⊢ ( 𝑐 = 𝐶 → ( TopOpen ‘ 𝑊 ) = 𝐽 ) |
| 6 | id | ⊢ ( 𝑐 = 𝐶 → 𝑐 = 𝐶 ) | |
| 7 | 5 6 | oveq12d | ⊢ ( 𝑐 = 𝐶 → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) = ( 𝐽 fLim 𝐶 ) ) |
| 8 | 7 | neeq1d | ⊢ ( 𝑐 = 𝐶 → ( ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ↔ ( 𝐽 fLim 𝐶 ) ≠ ∅ ) ) |
| 9 | 3 8 | imbi12d | ⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ↔ ( 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ ) ) ) |
| 10 | iscusp | ⊢ ( 𝑊 ∈ CUnifSp ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) ) | |
| 11 | 10 | simprbi | ⊢ ( 𝑊 ∈ CUnifSp → ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 13 | simpr | ⊢ ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → 𝐶 ∈ ( Fil ‘ 𝐵 ) ) | |
| 14 | 1 | fveq2i | ⊢ ( Fil ‘ 𝐵 ) = ( Fil ‘ ( Base ‘ 𝑊 ) ) |
| 15 | 13 14 | eleqtrdi | ⊢ ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → 𝐶 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ) |
| 16 | 9 12 15 | rspcdva | ⊢ ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ ) ) |
| 17 | 16 | 3impia | ⊢ ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ ) |
| 18 | 17 | 3com23 | ⊢ ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ ) |