This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncfdmsn | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) ∈ ( { 𝐴 } –cn→ { 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfdmsn | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) ∈ ( 𝒫 { 𝐴 } Cn 𝒫 { 𝐵 } ) ) | |
| 2 | snssi | ⊢ ( 𝐴 ∈ ℂ → { 𝐴 } ⊆ ℂ ) | |
| 3 | snssi | ⊢ ( 𝐵 ∈ ℂ → { 𝐵 } ⊆ ℂ ) | |
| 4 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 5 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t { 𝐴 } ) = ( ( TopOpen ‘ ℂfld ) ↾t { 𝐴 } ) | |
| 6 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t { 𝐵 } ) = ( ( TopOpen ‘ ℂfld ) ↾t { 𝐵 } ) | |
| 7 | 4 5 6 | cncfcn | ⊢ ( ( { 𝐴 } ⊆ ℂ ∧ { 𝐵 } ⊆ ℂ ) → ( { 𝐴 } –cn→ { 𝐵 } ) = ( ( ( TopOpen ‘ ℂfld ) ↾t { 𝐴 } ) Cn ( ( TopOpen ‘ ℂfld ) ↾t { 𝐵 } ) ) ) |
| 8 | 2 3 7 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( { 𝐴 } –cn→ { 𝐵 } ) = ( ( ( TopOpen ‘ ℂfld ) ↾t { 𝐴 } ) Cn ( ( TopOpen ‘ ℂfld ) ↾t { 𝐵 } ) ) ) |
| 9 | 4 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 10 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 11 | restsn2 | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝐴 ∈ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t { 𝐴 } ) = 𝒫 { 𝐴 } ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t { 𝐴 } ) = 𝒫 { 𝐴 } ) |
| 13 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 14 | restsn2 | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝐵 ∈ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t { 𝐵 } ) = 𝒫 { 𝐵 } ) | |
| 15 | 9 13 14 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t { 𝐵 } ) = 𝒫 { 𝐵 } ) |
| 16 | 12 15 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( TopOpen ‘ ℂfld ) ↾t { 𝐴 } ) Cn ( ( TopOpen ‘ ℂfld ) ↾t { 𝐵 } ) ) = ( 𝒫 { 𝐴 } Cn 𝒫 { 𝐵 } ) ) |
| 17 | 8 16 | eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝒫 { 𝐴 } Cn 𝒫 { 𝐵 } ) = ( { 𝐴 } –cn→ { 𝐵 } ) ) |
| 18 | 1 17 | eleqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) ∈ ( { 𝐴 } –cn→ { 𝐵 } ) ) |