This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0cnf | ⊢ ∅ ∈ ( { ∅ } Cn { ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 | ⊢ ∅ : ∅ ⟶ ∅ | |
| 2 | cnv0 | ⊢ ◡ ∅ = ∅ | |
| 3 | 2 | imaeq1i | ⊢ ( ◡ ∅ “ 𝑥 ) = ( ∅ “ 𝑥 ) |
| 4 | 0ima | ⊢ ( ∅ “ 𝑥 ) = ∅ | |
| 5 | 3 4 | eqtri | ⊢ ( ◡ ∅ “ 𝑥 ) = ∅ |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | 6 | snid | ⊢ ∅ ∈ { ∅ } |
| 8 | 5 7 | eqeltri | ⊢ ( ◡ ∅ “ 𝑥 ) ∈ { ∅ } |
| 9 | 8 | rgenw | ⊢ ∀ 𝑥 ∈ { ∅ } ( ◡ ∅ “ 𝑥 ) ∈ { ∅ } |
| 10 | sn0topon | ⊢ { ∅ } ∈ ( TopOn ‘ ∅ ) | |
| 11 | iscn | ⊢ ( ( { ∅ } ∈ ( TopOn ‘ ∅ ) ∧ { ∅ } ∈ ( TopOn ‘ ∅ ) ) → ( ∅ ∈ ( { ∅ } Cn { ∅ } ) ↔ ( ∅ : ∅ ⟶ ∅ ∧ ∀ 𝑥 ∈ { ∅ } ( ◡ ∅ “ 𝑥 ) ∈ { ∅ } ) ) ) | |
| 12 | 10 10 11 | mp2an | ⊢ ( ∅ ∈ ( { ∅ } Cn { ∅ } ) ↔ ( ∅ : ∅ ⟶ ∅ ∧ ∀ 𝑥 ∈ { ∅ } ( ◡ ∅ “ 𝑥 ) ∈ { ∅ } ) ) |
| 13 | 1 9 12 | mpbir2an | ⊢ ∅ ∈ ( { ∅ } Cn { ∅ } ) |