This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for clwwlkf1o : F is a 1-1 function. (Contributed by AV, 28-Sep-2018) (Revised by AV, 26-Apr-2021) (Revised by AV, 1-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clwwlkf1o.d | ⊢ 𝐷 = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } | |
| clwwlkf1o.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝑡 prefix 𝑁 ) ) | ||
| Assertion | clwwlkf1 | ⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝐷 –1-1→ ( 𝑁 ClWWalksN 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlkf1o.d | ⊢ 𝐷 = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } | |
| 2 | clwwlkf1o.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝑡 prefix 𝑁 ) ) | |
| 3 | 1 2 | clwwlkf | ⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝐷 ⟶ ( 𝑁 ClWWalksN 𝐺 ) ) |
| 4 | 1 2 | clwwlkfv | ⊢ ( 𝑥 ∈ 𝐷 → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 prefix 𝑁 ) ) |
| 5 | 1 2 | clwwlkfv | ⊢ ( 𝑦 ∈ 𝐷 → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 prefix 𝑁 ) ) |
| 6 | 4 5 | eqeqan12d | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) ) |
| 8 | fveq2 | ⊢ ( 𝑤 = 𝑥 → ( lastS ‘ 𝑤 ) = ( lastS ‘ 𝑥 ) ) | |
| 9 | fveq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 0 ) = ( 𝑥 ‘ 0 ) ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑤 = 𝑥 → ( ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) ↔ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) |
| 11 | 10 1 | elrab2 | ⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) |
| 12 | fveq2 | ⊢ ( 𝑤 = 𝑦 → ( lastS ‘ 𝑤 ) = ( lastS ‘ 𝑦 ) ) | |
| 13 | fveq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) | |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑤 = 𝑦 → ( ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) ↔ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ) |
| 15 | 14 1 | elrab2 | ⊢ ( 𝑦 ∈ 𝐷 ↔ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ) |
| 16 | 11 15 | anbi12i | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ↔ ( ( 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ∧ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ) ) |
| 17 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 18 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 19 | 17 18 | wwlknp | ⊢ ( 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑥 ‘ 𝑖 ) , ( 𝑥 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 20 | 17 18 | wwlknp | ⊢ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 21 | simprlr | ⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) | |
| 22 | simpllr | ⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) | |
| 23 | 21 22 | eqtr4d | ⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
| 24 | 23 | ad2antlr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
| 25 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 26 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 27 | pncan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) | |
| 28 | 27 | eqcomd | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → 𝑁 = ( ( 𝑁 + 1 ) − 1 ) ) |
| 29 | 25 26 28 | sylancl | ⊢ ( 𝑁 ∈ ℕ → 𝑁 = ( ( 𝑁 + 1 ) − 1 ) ) |
| 30 | oveq1 | ⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑥 ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) | |
| 31 | 30 | eqcomd | ⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( ( 𝑁 + 1 ) − 1 ) = ( ( ♯ ‘ 𝑥 ) − 1 ) ) |
| 32 | 29 31 | sylan9eqr | ⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 = ( ( ♯ ‘ 𝑥 ) − 1 ) ) |
| 33 | 32 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑥 prefix 𝑁 ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) |
| 34 | 32 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑦 prefix 𝑁 ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) |
| 35 | 33 34 | eqeq12d | ⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) ) |
| 36 | 35 | ex | ⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 37 | 36 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) ) ) |
| 39 | 38 | impcom | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) ) |
| 40 | 39 | biimpa | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) |
| 41 | simpll | ⊢ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) | |
| 42 | simpll | ⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ) | |
| 43 | 41 42 | anim12ci | ⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ) |
| 44 | 43 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ) |
| 45 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 46 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 47 | 45 46 | jctil | ⊢ ( 𝑁 ∈ ℕ → ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
| 48 | 47 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
| 49 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 50 | 49 | lep1d | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≤ ( 𝑁 + 1 ) ) |
| 51 | breq2 | ⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( 𝑁 ≤ ( ♯ ‘ 𝑥 ) ↔ 𝑁 ≤ ( 𝑁 + 1 ) ) ) | |
| 52 | 50 51 | imbitrrid | ⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( 𝑁 ∈ ℕ → 𝑁 ≤ ( ♯ ‘ 𝑥 ) ) ) |
| 53 | 52 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → 𝑁 ≤ ( ♯ ‘ 𝑥 ) ) ) |
| 54 | 53 | adantl | ⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( 𝑁 ∈ ℕ → 𝑁 ≤ ( ♯ ‘ 𝑥 ) ) ) |
| 55 | 54 | impcom | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → 𝑁 ≤ ( ♯ ‘ 𝑥 ) ) |
| 56 | breq2 | ⊢ ( ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) → ( 𝑁 ≤ ( ♯ ‘ 𝑦 ) ↔ 𝑁 ≤ ( 𝑁 + 1 ) ) ) | |
| 57 | 50 56 | imbitrrid | ⊢ ( ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) → ( 𝑁 ∈ ℕ → 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) ) |
| 58 | 57 | ad2antlr | ⊢ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( 𝑁 ∈ ℕ → 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) ) |
| 60 | 59 | impcom | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) |
| 61 | pfxval | ⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 prefix 𝑁 ) = ( 𝑥 substr 〈 0 , 𝑁 〉 ) ) | |
| 62 | 61 | ad2ant2rl | ⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑥 prefix 𝑁 ) = ( 𝑥 substr 〈 0 , 𝑁 〉 ) ) |
| 63 | pfxval | ⊢ ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑦 prefix 𝑁 ) = ( 𝑦 substr 〈 0 , 𝑁 〉 ) ) | |
| 64 | 63 | ad2ant2l | ⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑦 prefix 𝑁 ) = ( 𝑦 substr 〈 0 , 𝑁 〉 ) ) |
| 65 | 62 64 | eqeq12d | ⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 substr 〈 0 , 𝑁 〉 ) = ( 𝑦 substr 〈 0 , 𝑁 〉 ) ) ) |
| 66 | 65 | 3adant3 | ⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑥 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 substr 〈 0 , 𝑁 〉 ) = ( 𝑦 substr 〈 0 , 𝑁 〉 ) ) ) |
| 67 | swrdspsleq | ⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑥 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑥 substr 〈 0 , 𝑁 〉 ) = ( 𝑦 substr 〈 0 , 𝑁 〉 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) | |
| 68 | 66 67 | bitrd | ⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑥 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) |
| 69 | 44 48 55 60 68 | syl112anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) |
| 70 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ℕ ) | |
| 71 | 70 | biimpri | ⊢ ( 𝑁 ∈ ℕ → 0 ∈ ( 0 ..^ 𝑁 ) ) |
| 72 | 71 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → 0 ∈ ( 0 ..^ 𝑁 ) ) |
| 73 | fveq2 | ⊢ ( 𝑖 = 0 → ( 𝑥 ‘ 𝑖 ) = ( 𝑥 ‘ 0 ) ) | |
| 74 | fveq2 | ⊢ ( 𝑖 = 0 → ( 𝑦 ‘ 𝑖 ) = ( 𝑦 ‘ 0 ) ) | |
| 75 | 73 74 | eqeq12d | ⊢ ( 𝑖 = 0 → ( ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
| 76 | 75 | rspcv | ⊢ ( 0 ∈ ( 0 ..^ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) → ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
| 77 | 72 76 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) → ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
| 78 | 69 77 | sylbid | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
| 79 | 78 | imp | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) |
| 80 | simpr | ⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) | |
| 81 | simpr | ⊢ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) | |
| 82 | 80 81 | eqeqan12rd | ⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( ( lastS ‘ 𝑥 ) = ( lastS ‘ 𝑦 ) ↔ ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
| 83 | 82 | ad2antlr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( ( lastS ‘ 𝑥 ) = ( lastS ‘ 𝑦 ) ↔ ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
| 84 | 79 83 | mpbird | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( lastS ‘ 𝑥 ) = ( lastS ‘ 𝑦 ) ) |
| 85 | 24 40 84 | jca32 | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ∧ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( lastS ‘ 𝑦 ) ) ) ) |
| 86 | 42 | adantl | ⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 87 | 86 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 88 | 41 | adantr | ⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 89 | 88 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 90 | 1red | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) | |
| 91 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 92 | 0lt1 | ⊢ 0 < 1 | |
| 93 | 92 | a1i | ⊢ ( 𝑁 ∈ ℕ → 0 < 1 ) |
| 94 | 49 90 91 93 | addgt0d | ⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 + 1 ) ) |
| 95 | breq2 | ⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( 0 < ( ♯ ‘ 𝑥 ) ↔ 0 < ( 𝑁 + 1 ) ) ) | |
| 96 | 94 95 | imbitrrid | ⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( 𝑁 ∈ ℕ → 0 < ( ♯ ‘ 𝑥 ) ) ) |
| 97 | 96 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → 0 < ( ♯ ‘ 𝑥 ) ) ) |
| 98 | 97 | adantl | ⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( 𝑁 ∈ ℕ → 0 < ( ♯ ‘ 𝑥 ) ) ) |
| 99 | 98 | impcom | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → 0 < ( ♯ ‘ 𝑥 ) ) |
| 100 | 87 89 99 | 3jca | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 0 < ( ♯ ‘ 𝑥 ) ) ) |
| 101 | 100 | adantr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 0 < ( ♯ ‘ 𝑥 ) ) ) |
| 102 | pfxsuff1eqwrdeq | ⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 0 < ( ♯ ‘ 𝑥 ) ) → ( 𝑥 = 𝑦 ↔ ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ∧ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( lastS ‘ 𝑦 ) ) ) ) ) | |
| 103 | 101 102 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( 𝑥 = 𝑦 ↔ ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ∧ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( lastS ‘ 𝑦 ) ) ) ) ) |
| 104 | 85 103 | mpbird | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → 𝑥 = 𝑦 ) |
| 105 | 104 | exp31 | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) |
| 106 | 105 | expdcom | ⊢ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) |
| 107 | 106 | ex | ⊢ ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) → ( ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) → ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 108 | 107 | 3adant3 | ⊢ ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) → ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 109 | 20 108 | syl | ⊢ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) → ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 110 | 109 | imp | ⊢ ( ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) |
| 111 | 110 | expdcom | ⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) → ( ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) → ( ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 112 | 111 | 3adant3 | ⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑥 ‘ 𝑖 ) , ( 𝑥 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) → ( ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 113 | 19 112 | syl | ⊢ ( 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) → ( ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 114 | 113 | imp31 | ⊢ ( ( ( 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ∧ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) |
| 115 | 114 | com12 | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ∧ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) |
| 116 | 16 115 | biimtrid | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) |
| 117 | 116 | imp | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) |
| 118 | 7 117 | sylbid | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 119 | 118 | ralrimivva | ⊢ ( 𝑁 ∈ ℕ → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 120 | dff13 | ⊢ ( 𝐹 : 𝐷 –1-1→ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝐹 : 𝐷 ⟶ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 121 | 3 119 120 | sylanbrc | ⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝐷 –1-1→ ( 𝑁 ClWWalksN 𝐺 ) ) |