This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for clwwlkf1o : F is an onto function. (Contributed by Alexander van der Vekens, 29-Sep-2018) (Revised by AV, 26-Apr-2021) (Revised by AV, 1-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clwwlkf1o.d | ⊢ 𝐷 = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } | |
| clwwlkf1o.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝑡 prefix 𝑁 ) ) | ||
| Assertion | clwwlkfo | ⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝐷 –onto→ ( 𝑁 ClWWalksN 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlkf1o.d | ⊢ 𝐷 = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } | |
| 2 | clwwlkf1o.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝑡 prefix 𝑁 ) ) | |
| 3 | 1 2 | clwwlkf | ⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝐷 ⟶ ( 𝑁 ClWWalksN 𝐺 ) ) |
| 4 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 6 | 4 5 | clwwlknp | ⊢ ( 𝑝 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 7 | simpr | ⊢ ( ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) | |
| 8 | simpl1 | ⊢ ( ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ) | |
| 9 | 3simpc | ⊢ ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) | |
| 10 | 9 | adantr | ⊢ ( ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑁 ∈ ℕ ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 11 | 1 | clwwlkel | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) ∈ 𝐷 ) |
| 12 | 7 8 10 11 | syl3anc | ⊢ ( ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) ∈ 𝐷 ) |
| 13 | oveq2 | ⊢ ( 𝑁 = ( ♯ ‘ 𝑝 ) → ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix 𝑁 ) = ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑝 ) ) ) | |
| 14 | 13 | eqcoms | ⊢ ( ( ♯ ‘ 𝑝 ) = 𝑁 → ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix 𝑁 ) = ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑝 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) → ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix 𝑁 ) = ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑝 ) ) ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix 𝑁 ) = ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑝 ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑁 ∈ ℕ ) → ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix 𝑁 ) = ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑝 ) ) ) |
| 18 | simpll | ⊢ ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ) | |
| 19 | fstwrdne0 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ) → ( 𝑝 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) | |
| 20 | 19 | ancoms | ⊢ ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑝 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 21 | 20 | s1cld | ⊢ ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → 〈“ ( 𝑝 ‘ 0 ) ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 22 | 18 21 | jca | ⊢ ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 〈“ ( 𝑝 ‘ 0 ) ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) ) |
| 23 | 22 | 3ad2antl1 | ⊢ ( ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 〈“ ( 𝑝 ‘ 0 ) ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) ) |
| 24 | pfxccat1 | ⊢ ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 〈“ ( 𝑝 ‘ 0 ) ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑝 ) ) = 𝑝 ) | |
| 25 | 23 24 | syl | ⊢ ( ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑁 ∈ ℕ ) → ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑝 ) ) = 𝑝 ) |
| 26 | 17 25 | eqtr2d | ⊢ ( ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑁 ∈ ℕ ) → 𝑝 = ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix 𝑁 ) ) |
| 27 | 12 26 | jca | ⊢ ( ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ 𝑁 ∈ ℕ ) → ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) ∈ 𝐷 ∧ 𝑝 = ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix 𝑁 ) ) ) |
| 28 | 27 | ex | ⊢ ( ( ( 𝑝 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑝 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑝 ‘ 𝑖 ) , ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑝 ) , ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) ∈ 𝐷 ∧ 𝑝 = ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix 𝑁 ) ) ) ) |
| 29 | 6 28 | syl | ⊢ ( 𝑝 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑁 ∈ ℕ → ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) ∈ 𝐷 ∧ 𝑝 = ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix 𝑁 ) ) ) ) |
| 30 | 29 | impcom | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) ∈ 𝐷 ∧ 𝑝 = ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix 𝑁 ) ) ) |
| 31 | oveq1 | ⊢ ( 𝑥 = ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) → ( 𝑥 prefix 𝑁 ) = ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix 𝑁 ) ) | |
| 32 | 31 | rspceeqv | ⊢ ( ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) ∈ 𝐷 ∧ 𝑝 = ( ( 𝑝 ++ 〈“ ( 𝑝 ‘ 0 ) ”〉 ) prefix 𝑁 ) ) → ∃ 𝑥 ∈ 𝐷 𝑝 = ( 𝑥 prefix 𝑁 ) ) |
| 33 | 30 32 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ∃ 𝑥 ∈ 𝐷 𝑝 = ( 𝑥 prefix 𝑁 ) ) |
| 34 | 1 2 | clwwlkfv | ⊢ ( 𝑥 ∈ 𝐷 → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 prefix 𝑁 ) ) |
| 35 | 34 | eqeq2d | ⊢ ( 𝑥 ∈ 𝐷 → ( 𝑝 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑝 = ( 𝑥 prefix 𝑁 ) ) ) |
| 36 | 35 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝑝 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑝 = ( 𝑥 prefix 𝑁 ) ) ) |
| 37 | 36 | rexbidva | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( ∃ 𝑥 ∈ 𝐷 𝑝 = ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐷 𝑝 = ( 𝑥 prefix 𝑁 ) ) ) |
| 38 | 33 37 | mpbird | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑝 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ∃ 𝑥 ∈ 𝐷 𝑝 = ( 𝐹 ‘ 𝑥 ) ) |
| 39 | 38 | ralrimiva | ⊢ ( 𝑁 ∈ ℕ → ∀ 𝑝 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∃ 𝑥 ∈ 𝐷 𝑝 = ( 𝐹 ‘ 𝑥 ) ) |
| 40 | dffo3 | ⊢ ( 𝐹 : 𝐷 –onto→ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝐹 : 𝐷 ⟶ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∀ 𝑝 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∃ 𝑥 ∈ 𝐷 𝑝 = ( 𝐹 ‘ 𝑥 ) ) ) | |
| 41 | 3 39 40 | sylanbrc | ⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝐷 –onto→ ( 𝑁 ClWWalksN 𝐺 ) ) |