This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two (nonempty) words are equal if and only if they have the same prefix and the same single symbol suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018) (Revised by AV, 6-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxsuff1eqwrdeq | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 = 𝑈 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∧ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgt0n0 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → 𝑊 ≠ ∅ ) | |
| 2 | lennncl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 3 | 1 2 | syldan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 5 | fzo0end | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 7 | pfxsuffeqwrdeq | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 = 𝑈 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∧ ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) ) | |
| 8 | 6 7 | syld3an3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 = 𝑈 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∧ ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) ) |
| 9 | hashneq0 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 0 < ( ♯ ‘ 𝑊 ) ↔ 𝑊 ≠ ∅ ) ) | |
| 10 | 9 | biimpd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 0 < ( ♯ ‘ 𝑊 ) → 𝑊 ≠ ∅ ) ) |
| 11 | 10 | imdistani | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ) |
| 12 | 11 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ) |
| 14 | swrdlsw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( lastS ‘ 𝑊 ) ”〉 ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( lastS ‘ 𝑊 ) ”〉 ) |
| 16 | breq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( 0 < ( ♯ ‘ 𝑊 ) ↔ 0 < ( ♯ ‘ 𝑈 ) ) ) | |
| 17 | 16 | 3anbi3d | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑈 ) ) ) ) |
| 18 | hashneq0 | ⊢ ( 𝑈 ∈ Word 𝑉 → ( 0 < ( ♯ ‘ 𝑈 ) ↔ 𝑈 ≠ ∅ ) ) | |
| 19 | 18 | biimpd | ⊢ ( 𝑈 ∈ Word 𝑉 → ( 0 < ( ♯ ‘ 𝑈 ) → 𝑈 ≠ ∅ ) ) |
| 20 | 19 | imdistani | ⊢ ( ( 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑈 ) ) → ( 𝑈 ∈ Word 𝑉 ∧ 𝑈 ≠ ∅ ) ) |
| 21 | 20 | 3adant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑈 ) ) → ( 𝑈 ∈ Word 𝑉 ∧ 𝑈 ≠ ∅ ) ) |
| 22 | swrdlsw | ⊢ ( ( 𝑈 ∈ Word 𝑉 ∧ 𝑈 ≠ ∅ ) → ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 1 ) , ( ♯ ‘ 𝑈 ) 〉 ) = 〈“ ( lastS ‘ 𝑈 ) ”〉 ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑈 ) ) → ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 1 ) , ( ♯ ‘ 𝑈 ) 〉 ) = 〈“ ( lastS ‘ 𝑈 ) ”〉 ) |
| 24 | 17 23 | biimtrdi | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 1 ) , ( ♯ ‘ 𝑈 ) 〉 ) = 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 25 | 24 | impcom | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 1 ) , ( ♯ ‘ 𝑈 ) 〉 ) = 〈“ ( lastS ‘ 𝑈 ) ”〉 ) |
| 26 | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( ♯ ‘ 𝑈 ) − 1 ) ) | |
| 27 | id | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) | |
| 28 | 26 27 | opeq12d | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 = 〈 ( ( ♯ ‘ 𝑈 ) − 1 ) , ( ♯ ‘ 𝑈 ) 〉 ) |
| 29 | 28 | oveq2d | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 1 ) , ( ♯ ‘ 𝑈 ) 〉 ) ) |
| 30 | 29 | eqeq1d | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( lastS ‘ 𝑈 ) ”〉 ↔ ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 1 ) , ( ♯ ‘ 𝑈 ) 〉 ) = 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 31 | 30 | adantl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( lastS ‘ 𝑈 ) ”〉 ↔ ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑈 ) − 1 ) , ( ♯ ‘ 𝑈 ) 〉 ) = 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 32 | 25 31 | mpbird | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = 〈“ ( lastS ‘ 𝑈 ) ”〉 ) |
| 33 | 15 32 | eqeq12d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) ↔ 〈“ ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( lastS ‘ 𝑈 ) ”〉 ) ) |
| 34 | fvexd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( lastS ‘ 𝑊 ) ∈ V ) | |
| 35 | fvex | ⊢ ( lastS ‘ 𝑈 ) ∈ V | |
| 36 | s111 | ⊢ ( ( ( lastS ‘ 𝑊 ) ∈ V ∧ ( lastS ‘ 𝑈 ) ∈ V ) → ( 〈“ ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( lastS ‘ 𝑈 ) ”〉 ↔ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) | |
| 37 | 34 35 36 | sylancl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( 〈“ ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( lastS ‘ 𝑈 ) ”〉 ↔ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) |
| 38 | 33 37 | bitrd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) ↔ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) |
| 39 | 38 | anbi2d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∧ ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) ) ↔ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∧ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) ) |
| 40 | 39 | pm5.32da | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∧ ( 𝑊 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑈 substr 〈 ( ( ♯ ‘ 𝑊 ) − 1 ) , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∧ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) ) ) |
| 41 | 8 40 | bitrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( 𝑊 = 𝑈 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑈 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∧ ( lastS ‘ 𝑊 ) = ( lastS ‘ 𝑈 ) ) ) ) ) |