This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a prefix operation. (Contributed by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxval | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pfx | ⊢ prefix = ( 𝑠 ∈ V , 𝑙 ∈ ℕ0 ↦ ( 𝑠 substr 〈 0 , 𝑙 〉 ) ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) → prefix = ( 𝑠 ∈ V , 𝑙 ∈ ℕ0 ↦ ( 𝑠 substr 〈 0 , 𝑙 〉 ) ) ) |
| 3 | simpl | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑙 = 𝐿 ) → 𝑠 = 𝑆 ) | |
| 4 | opeq2 | ⊢ ( 𝑙 = 𝐿 → 〈 0 , 𝑙 〉 = 〈 0 , 𝐿 〉 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑙 = 𝐿 ) → 〈 0 , 𝑙 〉 = 〈 0 , 𝐿 〉 ) |
| 6 | 3 5 | oveq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑙 = 𝐿 ) → ( 𝑠 substr 〈 0 , 𝑙 〉 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) ∧ ( 𝑠 = 𝑆 ∧ 𝑙 = 𝐿 ) ) → ( 𝑠 substr 〈 0 , 𝑙 〉 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |
| 8 | elex | ⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) → 𝑆 ∈ V ) |
| 10 | simpr | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) → 𝐿 ∈ ℕ0 ) | |
| 11 | ovexd | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 substr 〈 0 , 𝐿 〉 ) ∈ V ) | |
| 12 | 2 7 9 10 11 | ovmpod | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 prefix 𝐿 ) = ( 𝑆 substr 〈 0 , 𝐿 〉 ) ) |