This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for clwwlkf1o : F is a 1-1 function. (Contributed by AV, 28-Sep-2018) (Revised by AV, 26-Apr-2021) (Revised by AV, 1-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clwwlkf1o.d | |- D = { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } |
|
| clwwlkf1o.f | |- F = ( t e. D |-> ( t prefix N ) ) |
||
| Assertion | clwwlkf1 | |- ( N e. NN -> F : D -1-1-> ( N ClWWalksN G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlkf1o.d | |- D = { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } |
|
| 2 | clwwlkf1o.f | |- F = ( t e. D |-> ( t prefix N ) ) |
|
| 3 | 1 2 | clwwlkf | |- ( N e. NN -> F : D --> ( N ClWWalksN G ) ) |
| 4 | 1 2 | clwwlkfv | |- ( x e. D -> ( F ` x ) = ( x prefix N ) ) |
| 5 | 1 2 | clwwlkfv | |- ( y e. D -> ( F ` y ) = ( y prefix N ) ) |
| 6 | 4 5 | eqeqan12d | |- ( ( x e. D /\ y e. D ) -> ( ( F ` x ) = ( F ` y ) <-> ( x prefix N ) = ( y prefix N ) ) ) |
| 7 | 6 | adantl | |- ( ( N e. NN /\ ( x e. D /\ y e. D ) ) -> ( ( F ` x ) = ( F ` y ) <-> ( x prefix N ) = ( y prefix N ) ) ) |
| 8 | fveq2 | |- ( w = x -> ( lastS ` w ) = ( lastS ` x ) ) |
|
| 9 | fveq1 | |- ( w = x -> ( w ` 0 ) = ( x ` 0 ) ) |
|
| 10 | 8 9 | eqeq12d | |- ( w = x -> ( ( lastS ` w ) = ( w ` 0 ) <-> ( lastS ` x ) = ( x ` 0 ) ) ) |
| 11 | 10 1 | elrab2 | |- ( x e. D <-> ( x e. ( N WWalksN G ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) |
| 12 | fveq2 | |- ( w = y -> ( lastS ` w ) = ( lastS ` y ) ) |
|
| 13 | fveq1 | |- ( w = y -> ( w ` 0 ) = ( y ` 0 ) ) |
|
| 14 | 12 13 | eqeq12d | |- ( w = y -> ( ( lastS ` w ) = ( w ` 0 ) <-> ( lastS ` y ) = ( y ` 0 ) ) ) |
| 15 | 14 1 | elrab2 | |- ( y e. D <-> ( y e. ( N WWalksN G ) /\ ( lastS ` y ) = ( y ` 0 ) ) ) |
| 16 | 11 15 | anbi12i | |- ( ( x e. D /\ y e. D ) <-> ( ( x e. ( N WWalksN G ) /\ ( lastS ` x ) = ( x ` 0 ) ) /\ ( y e. ( N WWalksN G ) /\ ( lastS ` y ) = ( y ` 0 ) ) ) ) |
| 17 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 18 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 19 | 17 18 | wwlknp | |- ( x e. ( N WWalksN G ) -> ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( x ` i ) , ( x ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 20 | 17 18 | wwlknp | |- ( y e. ( N WWalksN G ) -> ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( y ` i ) , ( y ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 21 | simprlr | |- ( ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) -> ( # ` x ) = ( N + 1 ) ) |
|
| 22 | simpllr | |- ( ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) -> ( # ` y ) = ( N + 1 ) ) |
|
| 23 | 21 22 | eqtr4d | |- ( ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) -> ( # ` x ) = ( # ` y ) ) |
| 24 | 23 | ad2antlr | |- ( ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) /\ ( x prefix N ) = ( y prefix N ) ) -> ( # ` x ) = ( # ` y ) ) |
| 25 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 26 | ax-1cn | |- 1 e. CC |
|
| 27 | pncan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
|
| 28 | 27 | eqcomd | |- ( ( N e. CC /\ 1 e. CC ) -> N = ( ( N + 1 ) - 1 ) ) |
| 29 | 25 26 28 | sylancl | |- ( N e. NN -> N = ( ( N + 1 ) - 1 ) ) |
| 30 | oveq1 | |- ( ( # ` x ) = ( N + 1 ) -> ( ( # ` x ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
|
| 31 | 30 | eqcomd | |- ( ( # ` x ) = ( N + 1 ) -> ( ( N + 1 ) - 1 ) = ( ( # ` x ) - 1 ) ) |
| 32 | 29 31 | sylan9eqr | |- ( ( ( # ` x ) = ( N + 1 ) /\ N e. NN ) -> N = ( ( # ` x ) - 1 ) ) |
| 33 | 32 | oveq2d | |- ( ( ( # ` x ) = ( N + 1 ) /\ N e. NN ) -> ( x prefix N ) = ( x prefix ( ( # ` x ) - 1 ) ) ) |
| 34 | 32 | oveq2d | |- ( ( ( # ` x ) = ( N + 1 ) /\ N e. NN ) -> ( y prefix N ) = ( y prefix ( ( # ` x ) - 1 ) ) ) |
| 35 | 33 34 | eqeq12d | |- ( ( ( # ` x ) = ( N + 1 ) /\ N e. NN ) -> ( ( x prefix N ) = ( y prefix N ) <-> ( x prefix ( ( # ` x ) - 1 ) ) = ( y prefix ( ( # ` x ) - 1 ) ) ) ) |
| 36 | 35 | ex | |- ( ( # ` x ) = ( N + 1 ) -> ( N e. NN -> ( ( x prefix N ) = ( y prefix N ) <-> ( x prefix ( ( # ` x ) - 1 ) ) = ( y prefix ( ( # ` x ) - 1 ) ) ) ) ) |
| 37 | 36 | ad2antlr | |- ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) -> ( N e. NN -> ( ( x prefix N ) = ( y prefix N ) <-> ( x prefix ( ( # ` x ) - 1 ) ) = ( y prefix ( ( # ` x ) - 1 ) ) ) ) ) |
| 38 | 37 | adantl | |- ( ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) -> ( N e. NN -> ( ( x prefix N ) = ( y prefix N ) <-> ( x prefix ( ( # ` x ) - 1 ) ) = ( y prefix ( ( # ` x ) - 1 ) ) ) ) ) |
| 39 | 38 | impcom | |- ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) -> ( ( x prefix N ) = ( y prefix N ) <-> ( x prefix ( ( # ` x ) - 1 ) ) = ( y prefix ( ( # ` x ) - 1 ) ) ) ) |
| 40 | 39 | biimpa | |- ( ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) /\ ( x prefix N ) = ( y prefix N ) ) -> ( x prefix ( ( # ` x ) - 1 ) ) = ( y prefix ( ( # ` x ) - 1 ) ) ) |
| 41 | simpll | |- ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) -> y e. Word ( Vtx ` G ) ) |
|
| 42 | simpll | |- ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) -> x e. Word ( Vtx ` G ) ) |
|
| 43 | 41 42 | anim12ci | |- ( ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) -> ( x e. Word ( Vtx ` G ) /\ y e. Word ( Vtx ` G ) ) ) |
| 44 | 43 | adantl | |- ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) -> ( x e. Word ( Vtx ` G ) /\ y e. Word ( Vtx ` G ) ) ) |
| 45 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 46 | 0nn0 | |- 0 e. NN0 |
|
| 47 | 45 46 | jctil | |- ( N e. NN -> ( 0 e. NN0 /\ N e. NN0 ) ) |
| 48 | 47 | adantr | |- ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) -> ( 0 e. NN0 /\ N e. NN0 ) ) |
| 49 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 50 | 49 | lep1d | |- ( N e. NN -> N <_ ( N + 1 ) ) |
| 51 | breq2 | |- ( ( # ` x ) = ( N + 1 ) -> ( N <_ ( # ` x ) <-> N <_ ( N + 1 ) ) ) |
|
| 52 | 50 51 | imbitrrid | |- ( ( # ` x ) = ( N + 1 ) -> ( N e. NN -> N <_ ( # ` x ) ) ) |
| 53 | 52 | ad2antlr | |- ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) -> ( N e. NN -> N <_ ( # ` x ) ) ) |
| 54 | 53 | adantl | |- ( ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) -> ( N e. NN -> N <_ ( # ` x ) ) ) |
| 55 | 54 | impcom | |- ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) -> N <_ ( # ` x ) ) |
| 56 | breq2 | |- ( ( # ` y ) = ( N + 1 ) -> ( N <_ ( # ` y ) <-> N <_ ( N + 1 ) ) ) |
|
| 57 | 50 56 | imbitrrid | |- ( ( # ` y ) = ( N + 1 ) -> ( N e. NN -> N <_ ( # ` y ) ) ) |
| 58 | 57 | ad2antlr | |- ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) -> ( N e. NN -> N <_ ( # ` y ) ) ) |
| 59 | 58 | adantr | |- ( ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) -> ( N e. NN -> N <_ ( # ` y ) ) ) |
| 60 | 59 | impcom | |- ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) -> N <_ ( # ` y ) ) |
| 61 | pfxval | |- ( ( x e. Word ( Vtx ` G ) /\ N e. NN0 ) -> ( x prefix N ) = ( x substr <. 0 , N >. ) ) |
|
| 62 | 61 | ad2ant2rl | |- ( ( ( x e. Word ( Vtx ` G ) /\ y e. Word ( Vtx ` G ) ) /\ ( 0 e. NN0 /\ N e. NN0 ) ) -> ( x prefix N ) = ( x substr <. 0 , N >. ) ) |
| 63 | pfxval | |- ( ( y e. Word ( Vtx ` G ) /\ N e. NN0 ) -> ( y prefix N ) = ( y substr <. 0 , N >. ) ) |
|
| 64 | 63 | ad2ant2l | |- ( ( ( x e. Word ( Vtx ` G ) /\ y e. Word ( Vtx ` G ) ) /\ ( 0 e. NN0 /\ N e. NN0 ) ) -> ( y prefix N ) = ( y substr <. 0 , N >. ) ) |
| 65 | 62 64 | eqeq12d | |- ( ( ( x e. Word ( Vtx ` G ) /\ y e. Word ( Vtx ` G ) ) /\ ( 0 e. NN0 /\ N e. NN0 ) ) -> ( ( x prefix N ) = ( y prefix N ) <-> ( x substr <. 0 , N >. ) = ( y substr <. 0 , N >. ) ) ) |
| 66 | 65 | 3adant3 | |- ( ( ( x e. Word ( Vtx ` G ) /\ y e. Word ( Vtx ` G ) ) /\ ( 0 e. NN0 /\ N e. NN0 ) /\ ( N <_ ( # ` x ) /\ N <_ ( # ` y ) ) ) -> ( ( x prefix N ) = ( y prefix N ) <-> ( x substr <. 0 , N >. ) = ( y substr <. 0 , N >. ) ) ) |
| 67 | swrdspsleq | |- ( ( ( x e. Word ( Vtx ` G ) /\ y e. Word ( Vtx ` G ) ) /\ ( 0 e. NN0 /\ N e. NN0 ) /\ ( N <_ ( # ` x ) /\ N <_ ( # ` y ) ) ) -> ( ( x substr <. 0 , N >. ) = ( y substr <. 0 , N >. ) <-> A. i e. ( 0 ..^ N ) ( x ` i ) = ( y ` i ) ) ) |
|
| 68 | 66 67 | bitrd | |- ( ( ( x e. Word ( Vtx ` G ) /\ y e. Word ( Vtx ` G ) ) /\ ( 0 e. NN0 /\ N e. NN0 ) /\ ( N <_ ( # ` x ) /\ N <_ ( # ` y ) ) ) -> ( ( x prefix N ) = ( y prefix N ) <-> A. i e. ( 0 ..^ N ) ( x ` i ) = ( y ` i ) ) ) |
| 69 | 44 48 55 60 68 | syl112anc | |- ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) -> ( ( x prefix N ) = ( y prefix N ) <-> A. i e. ( 0 ..^ N ) ( x ` i ) = ( y ` i ) ) ) |
| 70 | lbfzo0 | |- ( 0 e. ( 0 ..^ N ) <-> N e. NN ) |
|
| 71 | 70 | biimpri | |- ( N e. NN -> 0 e. ( 0 ..^ N ) ) |
| 72 | 71 | adantr | |- ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) -> 0 e. ( 0 ..^ N ) ) |
| 73 | fveq2 | |- ( i = 0 -> ( x ` i ) = ( x ` 0 ) ) |
|
| 74 | fveq2 | |- ( i = 0 -> ( y ` i ) = ( y ` 0 ) ) |
|
| 75 | 73 74 | eqeq12d | |- ( i = 0 -> ( ( x ` i ) = ( y ` i ) <-> ( x ` 0 ) = ( y ` 0 ) ) ) |
| 76 | 75 | rspcv | |- ( 0 e. ( 0 ..^ N ) -> ( A. i e. ( 0 ..^ N ) ( x ` i ) = ( y ` i ) -> ( x ` 0 ) = ( y ` 0 ) ) ) |
| 77 | 72 76 | syl | |- ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) -> ( A. i e. ( 0 ..^ N ) ( x ` i ) = ( y ` i ) -> ( x ` 0 ) = ( y ` 0 ) ) ) |
| 78 | 69 77 | sylbid | |- ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) -> ( ( x prefix N ) = ( y prefix N ) -> ( x ` 0 ) = ( y ` 0 ) ) ) |
| 79 | 78 | imp | |- ( ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) /\ ( x prefix N ) = ( y prefix N ) ) -> ( x ` 0 ) = ( y ` 0 ) ) |
| 80 | simpr | |- ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) -> ( lastS ` x ) = ( x ` 0 ) ) |
|
| 81 | simpr | |- ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) -> ( lastS ` y ) = ( y ` 0 ) ) |
|
| 82 | 80 81 | eqeqan12rd | |- ( ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) -> ( ( lastS ` x ) = ( lastS ` y ) <-> ( x ` 0 ) = ( y ` 0 ) ) ) |
| 83 | 82 | ad2antlr | |- ( ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) /\ ( x prefix N ) = ( y prefix N ) ) -> ( ( lastS ` x ) = ( lastS ` y ) <-> ( x ` 0 ) = ( y ` 0 ) ) ) |
| 84 | 79 83 | mpbird | |- ( ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) /\ ( x prefix N ) = ( y prefix N ) ) -> ( lastS ` x ) = ( lastS ` y ) ) |
| 85 | 24 40 84 | jca32 | |- ( ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) /\ ( x prefix N ) = ( y prefix N ) ) -> ( ( # ` x ) = ( # ` y ) /\ ( ( x prefix ( ( # ` x ) - 1 ) ) = ( y prefix ( ( # ` x ) - 1 ) ) /\ ( lastS ` x ) = ( lastS ` y ) ) ) ) |
| 86 | 42 | adantl | |- ( ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) -> x e. Word ( Vtx ` G ) ) |
| 87 | 86 | adantl | |- ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) -> x e. Word ( Vtx ` G ) ) |
| 88 | 41 | adantr | |- ( ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) -> y e. Word ( Vtx ` G ) ) |
| 89 | 88 | adantl | |- ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) -> y e. Word ( Vtx ` G ) ) |
| 90 | 1red | |- ( N e. NN -> 1 e. RR ) |
|
| 91 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 92 | 0lt1 | |- 0 < 1 |
|
| 93 | 92 | a1i | |- ( N e. NN -> 0 < 1 ) |
| 94 | 49 90 91 93 | addgt0d | |- ( N e. NN -> 0 < ( N + 1 ) ) |
| 95 | breq2 | |- ( ( # ` x ) = ( N + 1 ) -> ( 0 < ( # ` x ) <-> 0 < ( N + 1 ) ) ) |
|
| 96 | 94 95 | imbitrrid | |- ( ( # ` x ) = ( N + 1 ) -> ( N e. NN -> 0 < ( # ` x ) ) ) |
| 97 | 96 | ad2antlr | |- ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) -> ( N e. NN -> 0 < ( # ` x ) ) ) |
| 98 | 97 | adantl | |- ( ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) -> ( N e. NN -> 0 < ( # ` x ) ) ) |
| 99 | 98 | impcom | |- ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) -> 0 < ( # ` x ) ) |
| 100 | 87 89 99 | 3jca | |- ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) -> ( x e. Word ( Vtx ` G ) /\ y e. Word ( Vtx ` G ) /\ 0 < ( # ` x ) ) ) |
| 101 | 100 | adantr | |- ( ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) /\ ( x prefix N ) = ( y prefix N ) ) -> ( x e. Word ( Vtx ` G ) /\ y e. Word ( Vtx ` G ) /\ 0 < ( # ` x ) ) ) |
| 102 | pfxsuff1eqwrdeq | |- ( ( x e. Word ( Vtx ` G ) /\ y e. Word ( Vtx ` G ) /\ 0 < ( # ` x ) ) -> ( x = y <-> ( ( # ` x ) = ( # ` y ) /\ ( ( x prefix ( ( # ` x ) - 1 ) ) = ( y prefix ( ( # ` x ) - 1 ) ) /\ ( lastS ` x ) = ( lastS ` y ) ) ) ) ) |
|
| 103 | 101 102 | syl | |- ( ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) /\ ( x prefix N ) = ( y prefix N ) ) -> ( x = y <-> ( ( # ` x ) = ( # ` y ) /\ ( ( x prefix ( ( # ` x ) - 1 ) ) = ( y prefix ( ( # ` x ) - 1 ) ) /\ ( lastS ` x ) = ( lastS ` y ) ) ) ) ) |
| 104 | 85 103 | mpbird | |- ( ( ( N e. NN /\ ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) ) /\ ( x prefix N ) = ( y prefix N ) ) -> x = y ) |
| 105 | 104 | exp31 | |- ( N e. NN -> ( ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) /\ ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) ) -> ( ( x prefix N ) = ( y prefix N ) -> x = y ) ) ) |
| 106 | 105 | expdcom | |- ( ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) /\ ( lastS ` y ) = ( y ` 0 ) ) -> ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) -> ( N e. NN -> ( ( x prefix N ) = ( y prefix N ) -> x = y ) ) ) ) |
| 107 | 106 | ex | |- ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) ) -> ( ( lastS ` y ) = ( y ` 0 ) -> ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) -> ( N e. NN -> ( ( x prefix N ) = ( y prefix N ) -> x = y ) ) ) ) ) |
| 108 | 107 | 3adant3 | |- ( ( y e. Word ( Vtx ` G ) /\ ( # ` y ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( y ` i ) , ( y ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( ( lastS ` y ) = ( y ` 0 ) -> ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) -> ( N e. NN -> ( ( x prefix N ) = ( y prefix N ) -> x = y ) ) ) ) ) |
| 109 | 20 108 | syl | |- ( y e. ( N WWalksN G ) -> ( ( lastS ` y ) = ( y ` 0 ) -> ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) -> ( N e. NN -> ( ( x prefix N ) = ( y prefix N ) -> x = y ) ) ) ) ) |
| 110 | 109 | imp | |- ( ( y e. ( N WWalksN G ) /\ ( lastS ` y ) = ( y ` 0 ) ) -> ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) /\ ( lastS ` x ) = ( x ` 0 ) ) -> ( N e. NN -> ( ( x prefix N ) = ( y prefix N ) -> x = y ) ) ) ) |
| 111 | 110 | expdcom | |- ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) ) -> ( ( lastS ` x ) = ( x ` 0 ) -> ( ( y e. ( N WWalksN G ) /\ ( lastS ` y ) = ( y ` 0 ) ) -> ( N e. NN -> ( ( x prefix N ) = ( y prefix N ) -> x = y ) ) ) ) ) |
| 112 | 111 | 3adant3 | |- ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( x ` i ) , ( x ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( ( lastS ` x ) = ( x ` 0 ) -> ( ( y e. ( N WWalksN G ) /\ ( lastS ` y ) = ( y ` 0 ) ) -> ( N e. NN -> ( ( x prefix N ) = ( y prefix N ) -> x = y ) ) ) ) ) |
| 113 | 19 112 | syl | |- ( x e. ( N WWalksN G ) -> ( ( lastS ` x ) = ( x ` 0 ) -> ( ( y e. ( N WWalksN G ) /\ ( lastS ` y ) = ( y ` 0 ) ) -> ( N e. NN -> ( ( x prefix N ) = ( y prefix N ) -> x = y ) ) ) ) ) |
| 114 | 113 | imp31 | |- ( ( ( x e. ( N WWalksN G ) /\ ( lastS ` x ) = ( x ` 0 ) ) /\ ( y e. ( N WWalksN G ) /\ ( lastS ` y ) = ( y ` 0 ) ) ) -> ( N e. NN -> ( ( x prefix N ) = ( y prefix N ) -> x = y ) ) ) |
| 115 | 114 | com12 | |- ( N e. NN -> ( ( ( x e. ( N WWalksN G ) /\ ( lastS ` x ) = ( x ` 0 ) ) /\ ( y e. ( N WWalksN G ) /\ ( lastS ` y ) = ( y ` 0 ) ) ) -> ( ( x prefix N ) = ( y prefix N ) -> x = y ) ) ) |
| 116 | 16 115 | biimtrid | |- ( N e. NN -> ( ( x e. D /\ y e. D ) -> ( ( x prefix N ) = ( y prefix N ) -> x = y ) ) ) |
| 117 | 116 | imp | |- ( ( N e. NN /\ ( x e. D /\ y e. D ) ) -> ( ( x prefix N ) = ( y prefix N ) -> x = y ) ) |
| 118 | 7 117 | sylbid | |- ( ( N e. NN /\ ( x e. D /\ y e. D ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 119 | 118 | ralrimivva | |- ( N e. NN -> A. x e. D A. y e. D ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 120 | dff13 | |- ( F : D -1-1-> ( N ClWWalksN G ) <-> ( F : D --> ( N ClWWalksN G ) /\ A. x e. D A. y e. D ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
|
| 121 | 3 119 120 | sylanbrc | |- ( N e. NN -> F : D -1-1-> ( N ClWWalksN G ) ) |