This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for clnbgrgrim : For two isomorphic hypergraphs, if there is an edge connecting the image of a vertex of the first graph with a vertex of the second graph, the vertex of the second graph is the image of a neighbor of the vertex of the first graph. (Contributed by AV, 2-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrgrim.v | |- V = ( Vtx ` G ) |
|
| clnbgrgrimlem.w | |- W = ( Vtx ` H ) |
||
| clnbgrgrimlem.e | |- E = ( Edg ` H ) |
||
| Assertion | clnbgrgrimlem | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ ( X e. V /\ Y e. W ) ) -> ( ( K e. E /\ { ( F ` X ) , Y } C_ K ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrgrim.v | |- V = ( Vtx ` G ) |
|
| 2 | clnbgrgrimlem.w | |- W = ( Vtx ` H ) |
|
| 3 | clnbgrgrimlem.e | |- E = ( Edg ` H ) |
|
| 4 | 3 | eleq2i | |- ( K e. E <-> K e. ( Edg ` H ) ) |
| 5 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 6 | 5 | uhgredgiedgb | |- ( H e. UHGraph -> ( K e. ( Edg ` H ) <-> E. k e. dom ( iEdg ` H ) K = ( ( iEdg ` H ) ` k ) ) ) |
| 7 | 4 6 | bitrid | |- ( H e. UHGraph -> ( K e. E <-> E. k e. dom ( iEdg ` H ) K = ( ( iEdg ` H ) ` k ) ) ) |
| 8 | 7 | adantl | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( K e. E <-> E. k e. dom ( iEdg ` H ) K = ( ( iEdg ` H ) ` k ) ) ) |
| 9 | 8 | 3ad2ant3 | |- ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) -> ( K e. E <-> E. k e. dom ( iEdg ` H ) K = ( ( iEdg ` H ) ` k ) ) ) |
| 10 | 9 | adantr | |- ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) -> ( K e. E <-> E. k e. dom ( iEdg ` H ) K = ( ( iEdg ` H ) ` k ) ) ) |
| 11 | sseq2 | |- ( K = ( ( iEdg ` H ) ` k ) -> ( { ( F ` X ) , Y } C_ K <-> { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) ) ) |
|
| 12 | 11 | adantl | |- ( ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) /\ K = ( ( iEdg ` H ) ` k ) ) -> ( { ( F ` X ) , Y } C_ K <-> { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) ) ) |
| 13 | simp1 | |- ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) -> F : V -1-1-onto-> W ) |
|
| 14 | simpr | |- ( ( X e. V /\ Y e. W ) -> Y e. W ) |
|
| 15 | 13 14 | anim12i | |- ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) -> ( F : V -1-1-onto-> W /\ Y e. W ) ) |
| 16 | f1ocnvdm | |- ( ( F : V -1-1-onto-> W /\ Y e. W ) -> ( `' F ` Y ) e. V ) |
|
| 17 | 15 16 | syl | |- ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) -> ( `' F ` Y ) e. V ) |
| 18 | simpl | |- ( ( X e. V /\ Y e. W ) -> X e. V ) |
|
| 19 | 18 | adantl | |- ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) -> X e. V ) |
| 20 | 17 19 | jca | |- ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) -> ( ( `' F ` Y ) e. V /\ X e. V ) ) |
| 21 | 20 | ad2antrr | |- ( ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) /\ { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) ) -> ( ( `' F ` Y ) e. V /\ X e. V ) ) |
| 22 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 23 | 22 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 24 | 23 | adantr | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> Fun ( iEdg ` G ) ) |
| 25 | 24 | 3ad2ant3 | |- ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) -> Fun ( iEdg ` G ) ) |
| 26 | 25 | ad2antrr | |- ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) -> Fun ( iEdg ` G ) ) |
| 27 | simpl2l | |- ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) -> j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) |
|
| 28 | f1ocnvdm | |- ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ k e. dom ( iEdg ` H ) ) -> ( `' j ` k ) e. dom ( iEdg ` G ) ) |
|
| 29 | 27 28 | sylan | |- ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) -> ( `' j ` k ) e. dom ( iEdg ` G ) ) |
| 30 | 26 29 | jca | |- ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) -> ( Fun ( iEdg ` G ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) ) |
| 31 | 22 | iedgedg | |- ( ( Fun ( iEdg ` G ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` ( `' j ` k ) ) e. ( Edg ` G ) ) |
| 32 | 30 31 | syl | |- ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( iEdg ` G ) ` ( `' j ` k ) ) e. ( Edg ` G ) ) |
| 33 | 32 | adantr | |- ( ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) /\ { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) ) -> ( ( iEdg ` G ) ` ( `' j ` k ) ) e. ( Edg ` G ) ) |
| 34 | sseq2 | |- ( e = ( ( iEdg ` G ) ` ( `' j ` k ) ) -> ( { X , ( `' F ` Y ) } C_ e <-> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) |
|
| 35 | 34 | adantl | |- ( ( ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) /\ { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) ) /\ e = ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( { X , ( `' F ` Y ) } C_ e <-> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) |
| 36 | 2fveq3 | |- ( i = ( `' j ` k ) -> ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) ) |
|
| 37 | fveq2 | |- ( i = ( `' j ` k ) -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` ( `' j ` k ) ) ) |
|
| 38 | 37 | imaeq2d | |- ( i = ( `' j ` k ) -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) |
| 39 | 36 38 | eqeq12d | |- ( i = ( `' j ` k ) -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 40 | 39 | rspcv | |- ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 41 | 40 | adantl | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 42 | simpr | |- ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) |
|
| 43 | simp1 | |- ( ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) -> k e. dom ( iEdg ` H ) ) |
|
| 44 | 42 43 | anim12i | |- ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) -> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ k e. dom ( iEdg ` H ) ) ) |
| 45 | 44 | adantr | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ k e. dom ( iEdg ` H ) ) ) |
| 46 | f1ocnvfv2 | |- ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ k e. dom ( iEdg ` H ) ) -> ( j ` ( `' j ` k ) ) = k ) |
|
| 47 | 45 46 | syl | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( j ` ( `' j ` k ) ) = k ) |
| 48 | 47 | fveqeq2d | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) <-> ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 49 | sseq2 | |- ( ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) <-> { ( F ` X ) , Y } C_ ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
|
| 50 | 49 | adantl | |- ( ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) <-> { ( F ` X ) , Y } C_ ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 51 | f1ofn | |- ( F : V -1-1-onto-> W -> F Fn V ) |
|
| 52 | 51 | ad2antrr | |- ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) -> F Fn V ) |
| 53 | simpr3l | |- ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) -> X e. V ) |
|
| 54 | simpl | |- ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> F : V -1-1-onto-> W ) |
|
| 55 | 14 | 3ad2ant3 | |- ( ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) -> Y e. W ) |
| 56 | 54 55 | anim12i | |- ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) -> ( F : V -1-1-onto-> W /\ Y e. W ) ) |
| 57 | 56 16 | syl | |- ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) -> ( `' F ` Y ) e. V ) |
| 58 | 52 53 57 | 3jca | |- ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) -> ( F Fn V /\ X e. V /\ ( `' F ` Y ) e. V ) ) |
| 59 | 58 | adantr | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( F Fn V /\ X e. V /\ ( `' F ` Y ) e. V ) ) |
| 60 | fnimapr | |- ( ( F Fn V /\ X e. V /\ ( `' F ` Y ) e. V ) -> ( F " { X , ( `' F ` Y ) } ) = { ( F ` X ) , ( F ` ( `' F ` Y ) ) } ) |
|
| 61 | 59 60 | syl | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( F " { X , ( `' F ` Y ) } ) = { ( F ` X ) , ( F ` ( `' F ` Y ) ) } ) |
| 62 | 56 | adantr | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( F : V -1-1-onto-> W /\ Y e. W ) ) |
| 63 | f1ocnvfv2 | |- ( ( F : V -1-1-onto-> W /\ Y e. W ) -> ( F ` ( `' F ` Y ) ) = Y ) |
|
| 64 | 62 63 | syl | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( F ` ( `' F ` Y ) ) = Y ) |
| 65 | 64 | preq2d | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> { ( F ` X ) , ( F ` ( `' F ` Y ) ) } = { ( F ` X ) , Y } ) |
| 66 | 61 65 | eqtr2d | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> { ( F ` X ) , Y } = ( F " { X , ( `' F ` Y ) } ) ) |
| 67 | 66 | sseq1d | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( { ( F ` X ) , Y } C_ ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) <-> ( F " { X , ( `' F ` Y ) } ) C_ ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 68 | f1of1 | |- ( F : V -1-1-onto-> W -> F : V -1-1-> W ) |
|
| 69 | 68 | adantr | |- ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> F : V -1-1-> W ) |
| 70 | 69 | ad2antrr | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> F : V -1-1-> W ) |
| 71 | 53 57 | prssd | |- ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) -> { X , ( `' F ` Y ) } C_ V ) |
| 72 | 71 | adantr | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> { X , ( `' F ` Y ) } C_ V ) |
| 73 | simpr2l | |- ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) -> G e. UHGraph ) |
|
| 74 | 1 22 | uhgrss | |- ( ( G e. UHGraph /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` ( `' j ` k ) ) C_ V ) |
| 75 | 73 74 | sylan | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` ( `' j ` k ) ) C_ V ) |
| 76 | f1imass | |- ( ( F : V -1-1-> W /\ ( { X , ( `' F ` Y ) } C_ V /\ ( ( iEdg ` G ) ` ( `' j ` k ) ) C_ V ) ) -> ( ( F " { X , ( `' F ` Y ) } ) C_ ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) <-> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) |
|
| 77 | 70 72 75 76 | syl12anc | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( ( F " { X , ( `' F ` Y ) } ) C_ ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) <-> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) |
| 78 | 77 | biimpd | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( ( F " { X , ( `' F ` Y ) } ) C_ ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) |
| 79 | 67 78 | sylbid | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( { ( F ` X ) , Y } C_ ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) |
| 80 | 79 | adantr | |- ( ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> ( { ( F ` X ) , Y } C_ ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) |
| 81 | 50 80 | sylbid | |- ( ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) |
| 82 | 81 | ex | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( ( ( iEdg ` H ) ` k ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 83 | 48 82 | sylbid | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( ( ( iEdg ` H ) ` ( j ` ( `' j ` k ) ) ) = ( F " ( ( iEdg ` G ) ` ( `' j ` k ) ) ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 84 | 41 83 | syld | |- ( ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) /\ ( `' j ` k ) e. dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 85 | 84 | ex | |- ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) ) |
| 86 | 85 | com23 | |- ( ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ ( k e. dom ( iEdg ` H ) /\ ( G e. UHGraph /\ H e. UHGraph ) /\ ( X e. V /\ Y e. W ) ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) ) |
| 87 | 86 | 3exp2 | |- ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( k e. dom ( iEdg ` H ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( ( X e. V /\ Y e. W ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) ) ) ) ) |
| 88 | 87 | com25 | |- ( ( F : V -1-1-onto-> W /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( ( X e. V /\ Y e. W ) -> ( k e. dom ( iEdg ` H ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) ) ) ) ) |
| 89 | 88 | expimpd | |- ( F : V -1-1-onto-> W -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( ( X e. V /\ Y e. W ) -> ( k e. dom ( iEdg ` H ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) ) ) ) ) |
| 90 | 89 | 3imp1 | |- ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) -> ( k e. dom ( iEdg ` H ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) ) |
| 91 | 90 | imp | |- ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) -> ( ( `' j ` k ) e. dom ( iEdg ` G ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) ) |
| 92 | 29 91 | mpd | |- ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) ) |
| 93 | 92 | imp | |- ( ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) /\ { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) ) -> { X , ( `' F ` Y ) } C_ ( ( iEdg ` G ) ` ( `' j ` k ) ) ) |
| 94 | 33 35 93 | rspcedvd | |- ( ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) /\ { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) ) -> E. e e. ( Edg ` G ) { X , ( `' F ` Y ) } C_ e ) |
| 95 | 94 | olcd | |- ( ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) /\ { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) ) -> ( ( `' F ` Y ) = X \/ E. e e. ( Edg ` G ) { X , ( `' F ` Y ) } C_ e ) ) |
| 96 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 97 | 1 96 | clnbgrel | |- ( ( `' F ` Y ) e. ( G ClNeighbVtx X ) <-> ( ( ( `' F ` Y ) e. V /\ X e. V ) /\ ( ( `' F ` Y ) = X \/ E. e e. ( Edg ` G ) { X , ( `' F ` Y ) } C_ e ) ) ) |
| 98 | 21 95 97 | sylanbrc | |- ( ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) /\ { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) ) -> ( `' F ` Y ) e. ( G ClNeighbVtx X ) ) |
| 99 | 98 | ex | |- ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> ( `' F ` Y ) e. ( G ClNeighbVtx X ) ) ) |
| 100 | 99 | adantr | |- ( ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) /\ K = ( ( iEdg ` H ) ` k ) ) -> ( { ( F ` X ) , Y } C_ ( ( iEdg ` H ) ` k ) -> ( `' F ` Y ) e. ( G ClNeighbVtx X ) ) ) |
| 101 | 12 100 | sylbid | |- ( ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) /\ K = ( ( iEdg ` H ) ` k ) ) -> ( { ( F ` X ) , Y } C_ K -> ( `' F ` Y ) e. ( G ClNeighbVtx X ) ) ) |
| 102 | 101 | ex | |- ( ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) /\ k e. dom ( iEdg ` H ) ) -> ( K = ( ( iEdg ` H ) ` k ) -> ( { ( F ` X ) , Y } C_ K -> ( `' F ` Y ) e. ( G ClNeighbVtx X ) ) ) ) |
| 103 | 102 | rexlimdva | |- ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) -> ( E. k e. dom ( iEdg ` H ) K = ( ( iEdg ` H ) ` k ) -> ( { ( F ` X ) , Y } C_ K -> ( `' F ` Y ) e. ( G ClNeighbVtx X ) ) ) ) |
| 104 | 10 103 | sylbid | |- ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) -> ( K e. E -> ( { ( F ` X ) , Y } C_ K -> ( `' F ` Y ) e. ( G ClNeighbVtx X ) ) ) ) |
| 105 | 104 | impd | |- ( ( ( F : V -1-1-onto-> W /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. UHGraph ) ) /\ ( X e. V /\ Y e. W ) ) -> ( ( K e. E /\ { ( F ` X ) , Y } C_ K ) -> ( `' F ` Y ) e. ( G ClNeighbVtx X ) ) ) |
| 106 | 105 | 3exp1 | |- ( F : V -1-1-onto-> W -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( ( X e. V /\ Y e. W ) -> ( ( K e. E /\ { ( F ` X ) , Y } C_ K ) -> ( `' F ` Y ) e. ( G ClNeighbVtx X ) ) ) ) ) ) |
| 107 | 106 | exlimdv | |- ( F : V -1-1-onto-> W -> ( E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( ( X e. V /\ Y e. W ) -> ( ( K e. E /\ { ( F ` X ) , Y } C_ K ) -> ( `' F ` Y ) e. ( G ClNeighbVtx X ) ) ) ) ) ) |
| 108 | 107 | imp | |- ( ( F : V -1-1-onto-> W /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> ( ( X e. V /\ Y e. W ) -> ( ( K e. E /\ { ( F ` X ) , Y } C_ K ) -> ( `' F ` Y ) e. ( G ClNeighbVtx X ) ) ) ) ) |
| 109 | 1 2 22 5 | grimprop | |- ( F e. ( G GraphIso H ) -> ( F : V -1-1-onto-> W /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 110 | 108 109 | syl11 | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( F e. ( G GraphIso H ) -> ( ( X e. V /\ Y e. W ) -> ( ( K e. E /\ { ( F ` X ) , Y } C_ K ) -> ( `' F ` Y ) e. ( G ClNeighbVtx X ) ) ) ) ) |
| 111 | 110 | 3imp1 | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ ( X e. V /\ Y e. W ) ) /\ ( K e. E /\ { ( F ` X ) , Y } C_ K ) ) -> ( `' F ` Y ) e. ( G ClNeighbVtx X ) ) |
| 112 | fveqeq2 | |- ( n = ( `' F ` Y ) -> ( ( F ` n ) = Y <-> ( F ` ( `' F ` Y ) ) = Y ) ) |
|
| 113 | 112 | adantl | |- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ ( X e. V /\ Y e. W ) ) /\ ( K e. E /\ { ( F ` X ) , Y } C_ K ) ) /\ n = ( `' F ` Y ) ) -> ( ( F ` n ) = Y <-> ( F ` ( `' F ` Y ) ) = Y ) ) |
| 114 | 1 2 | grimf1o | |- ( F e. ( G GraphIso H ) -> F : V -1-1-onto-> W ) |
| 115 | 114 14 | anim12i | |- ( ( F e. ( G GraphIso H ) /\ ( X e. V /\ Y e. W ) ) -> ( F : V -1-1-onto-> W /\ Y e. W ) ) |
| 116 | 115 | 3adant1 | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ ( X e. V /\ Y e. W ) ) -> ( F : V -1-1-onto-> W /\ Y e. W ) ) |
| 117 | 116 | adantr | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ ( X e. V /\ Y e. W ) ) /\ ( K e. E /\ { ( F ` X ) , Y } C_ K ) ) -> ( F : V -1-1-onto-> W /\ Y e. W ) ) |
| 118 | 117 63 | syl | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ ( X e. V /\ Y e. W ) ) /\ ( K e. E /\ { ( F ` X ) , Y } C_ K ) ) -> ( F ` ( `' F ` Y ) ) = Y ) |
| 119 | 111 113 118 | rspcedvd | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ ( X e. V /\ Y e. W ) ) /\ ( K e. E /\ { ( F ` X ) , Y } C_ K ) ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = Y ) |
| 120 | 119 | ex | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ F e. ( G GraphIso H ) /\ ( X e. V /\ Y e. W ) ) -> ( ( K e. E /\ { ( F ` X ) , Y } C_ K ) -> E. n e. ( G ClNeighbVtx X ) ( F ` n ) = Y ) ) |