This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2prod.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| clim2prod.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| clim2prod.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| clim2prod.4 | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) ⇝ 𝐴 ) | ||
| Assertion | clim2prod | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2prod.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | clim2prod.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | clim2prod.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 4 | clim2prod.4 | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) ⇝ 𝐴 ) | |
| 5 | eqid | ⊢ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) | |
| 6 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 7 | 1 6 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 8 | 7 2 | sselid | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 9 | 8 | peano2zd | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
| 10 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 11 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 13 | 1 12 3 | prodf | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ ) |
| 14 | 13 2 | ffvelcdmd | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
| 15 | seqex | ⊢ seq 𝑀 ( · , 𝐹 ) ∈ V | |
| 16 | 15 | a1i | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ∈ V ) |
| 17 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 18 | uzss | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 19 | 10 17 18 | 3syl | ⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 20 | 19 1 | sseqtrrdi | ⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ 𝑍 ) |
| 21 | 20 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 22 | 21 3 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 23 | 5 9 22 | prodf | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) : ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⟶ ℂ ) |
| 24 | 23 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℂ ) |
| 25 | fveq2 | ⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) | |
| 26 | fveq2 | ⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) | |
| 27 | 26 | oveq2d | ⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 28 | 25 27 | eqeq12d | ⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 29 | 28 | imbi2d | ⊢ ( 𝑥 = ( 𝑁 + 1 ) → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) ) ) |
| 30 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) | |
| 31 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) | |
| 32 | 31 | oveq2d | ⊢ ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) |
| 33 | 30 32 | eqeq12d | ⊢ ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 34 | 33 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
| 35 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 36 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 37 | 36 | oveq2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 38 | 35 37 | eqeq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 39 | 38 | imbi2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 40 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) ) | |
| 41 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) | |
| 42 | 41 | oveq2d | ⊢ ( 𝑥 = 𝑘 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) ) |
| 43 | 40 42 | eqeq12d | ⊢ ( 𝑥 = 𝑘 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ↔ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) ) ) |
| 44 | 43 | imbi2d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑥 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) ) ) ) |
| 45 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 46 | seqp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| 48 | seq1 | ⊢ ( ( 𝑁 + 1 ) ∈ ℤ → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) | |
| 49 | 48 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) |
| 50 | 49 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| 51 | 47 50 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 52 | 51 | expcom | ⊢ ( ( 𝑁 + 1 ) ∈ ℤ → ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 53 | 19 | sselda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 54 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 55 | 53 54 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 56 | 55 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 57 | oveq1 | ⊢ ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 58 | 57 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 59 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
| 60 | 23 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
| 61 | peano2uz | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 62 | 61 1 | eleqtrrdi | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 63 | 53 62 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 64 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 65 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 66 | 65 | eleq1d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
| 67 | 66 | rspcv | ⊢ ( ( 𝑛 + 1 ) ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
| 68 | 64 67 | mpan9 | ⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 69 | 63 68 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 70 | 59 60 69 | mulassd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 71 | 70 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 72 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 73 | 72 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 74 | 73 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 75 | 74 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 76 | 71 75 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 77 | 56 58 76 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 78 | 77 | exp31 | ⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 79 | 78 | com12 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝜑 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 80 | 79 | a2d | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 81 | 29 34 39 44 52 80 | uzind4 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) ) ) |
| 82 | 81 | impcom | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑘 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑘 ) ) ) |
| 83 | 5 9 4 14 16 24 82 | climmulc2 | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · 𝐴 ) ) |