This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2prod.1 | |- Z = ( ZZ>= ` M ) |
|
| clim2prod.2 | |- ( ph -> N e. Z ) |
||
| clim2prod.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| clim2prod.4 | |- ( ph -> seq ( N + 1 ) ( x. , F ) ~~> A ) |
||
| Assertion | clim2prod | |- ( ph -> seq M ( x. , F ) ~~> ( ( seq M ( x. , F ) ` N ) x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2prod.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | clim2prod.2 | |- ( ph -> N e. Z ) |
|
| 3 | clim2prod.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 4 | clim2prod.4 | |- ( ph -> seq ( N + 1 ) ( x. , F ) ~~> A ) |
|
| 5 | eqid | |- ( ZZ>= ` ( N + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) |
|
| 6 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 7 | 1 6 | eqsstri | |- Z C_ ZZ |
| 8 | 7 2 | sselid | |- ( ph -> N e. ZZ ) |
| 9 | 8 | peano2zd | |- ( ph -> ( N + 1 ) e. ZZ ) |
| 10 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 11 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 12 | 10 11 | syl | |- ( ph -> M e. ZZ ) |
| 13 | 1 12 3 | prodf | |- ( ph -> seq M ( x. , F ) : Z --> CC ) |
| 14 | 13 2 | ffvelcdmd | |- ( ph -> ( seq M ( x. , F ) ` N ) e. CC ) |
| 15 | seqex | |- seq M ( x. , F ) e. _V |
|
| 16 | 15 | a1i | |- ( ph -> seq M ( x. , F ) e. _V ) |
| 17 | peano2uz | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
|
| 18 | uzss | |- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( ZZ>= ` ( N + 1 ) ) C_ ( ZZ>= ` M ) ) |
|
| 19 | 10 17 18 | 3syl | |- ( ph -> ( ZZ>= ` ( N + 1 ) ) C_ ( ZZ>= ` M ) ) |
| 20 | 19 1 | sseqtrrdi | |- ( ph -> ( ZZ>= ` ( N + 1 ) ) C_ Z ) |
| 21 | 20 | sselda | |- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) |
| 22 | 21 3 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` k ) e. CC ) |
| 23 | 5 9 22 | prodf | |- ( ph -> seq ( N + 1 ) ( x. , F ) : ( ZZ>= ` ( N + 1 ) ) --> CC ) |
| 24 | 23 | ffvelcdmda | |- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , F ) ` k ) e. CC ) |
| 25 | fveq2 | |- ( x = ( N + 1 ) -> ( seq M ( x. , F ) ` x ) = ( seq M ( x. , F ) ` ( N + 1 ) ) ) |
|
| 26 | fveq2 | |- ( x = ( N + 1 ) -> ( seq ( N + 1 ) ( x. , F ) ` x ) = ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) |
|
| 27 | 26 | oveq2d | |- ( x = ( N + 1 ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) |
| 28 | 25 27 | eqeq12d | |- ( x = ( N + 1 ) -> ( ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) <-> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) ) |
| 29 | 28 | imbi2d | |- ( x = ( N + 1 ) -> ( ( ph -> ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) ) <-> ( ph -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) ) ) |
| 30 | fveq2 | |- ( x = n -> ( seq M ( x. , F ) ` x ) = ( seq M ( x. , F ) ` n ) ) |
|
| 31 | fveq2 | |- ( x = n -> ( seq ( N + 1 ) ( x. , F ) ` x ) = ( seq ( N + 1 ) ( x. , F ) ` n ) ) |
|
| 32 | 31 | oveq2d | |- ( x = n -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) |
| 33 | 30 32 | eqeq12d | |- ( x = n -> ( ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) <-> ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) ) |
| 34 | 33 | imbi2d | |- ( x = n -> ( ( ph -> ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) ) <-> ( ph -> ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) ) ) |
| 35 | fveq2 | |- ( x = ( n + 1 ) -> ( seq M ( x. , F ) ` x ) = ( seq M ( x. , F ) ` ( n + 1 ) ) ) |
|
| 36 | fveq2 | |- ( x = ( n + 1 ) -> ( seq ( N + 1 ) ( x. , F ) ` x ) = ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) |
|
| 37 | 36 | oveq2d | |- ( x = ( n + 1 ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) |
| 38 | 35 37 | eqeq12d | |- ( x = ( n + 1 ) -> ( ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) <-> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) |
| 39 | 38 | imbi2d | |- ( x = ( n + 1 ) -> ( ( ph -> ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) ) <-> ( ph -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
| 40 | fveq2 | |- ( x = k -> ( seq M ( x. , F ) ` x ) = ( seq M ( x. , F ) ` k ) ) |
|
| 41 | fveq2 | |- ( x = k -> ( seq ( N + 1 ) ( x. , F ) ` x ) = ( seq ( N + 1 ) ( x. , F ) ` k ) ) |
|
| 42 | 41 | oveq2d | |- ( x = k -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) |
| 43 | 40 42 | eqeq12d | |- ( x = k -> ( ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) <-> ( seq M ( x. , F ) ` k ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) ) |
| 44 | 43 | imbi2d | |- ( x = k -> ( ( ph -> ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) ) <-> ( ph -> ( seq M ( x. , F ) ` k ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) ) ) |
| 45 | 10 | adantr | |- ( ( ph /\ ( N + 1 ) e. ZZ ) -> N e. ( ZZ>= ` M ) ) |
| 46 | seqp1 | |- ( N e. ( ZZ>= ` M ) -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( F ` ( N + 1 ) ) ) ) |
|
| 47 | 45 46 | syl | |- ( ( ph /\ ( N + 1 ) e. ZZ ) -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( F ` ( N + 1 ) ) ) ) |
| 48 | seq1 | |- ( ( N + 1 ) e. ZZ -> ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) = ( F ` ( N + 1 ) ) ) |
|
| 49 | 48 | adantl | |- ( ( ph /\ ( N + 1 ) e. ZZ ) -> ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) = ( F ` ( N + 1 ) ) ) |
| 50 | 49 | oveq2d | |- ( ( ph /\ ( N + 1 ) e. ZZ ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( F ` ( N + 1 ) ) ) ) |
| 51 | 47 50 | eqtr4d | |- ( ( ph /\ ( N + 1 ) e. ZZ ) -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) |
| 52 | 51 | expcom | |- ( ( N + 1 ) e. ZZ -> ( ph -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) ) |
| 53 | 19 | sselda | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> n e. ( ZZ>= ` M ) ) |
| 54 | seqp1 | |- ( n e. ( ZZ>= ` M ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
|
| 55 | 53 54 | syl | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 56 | 55 | adantr | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 57 | oveq1 | |- ( ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) -> ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) = ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) ) |
|
| 58 | 57 | adantl | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) = ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) ) |
| 59 | 14 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` N ) e. CC ) |
| 60 | 23 | ffvelcdmda | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , F ) ` n ) e. CC ) |
| 61 | peano2uz | |- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. ( ZZ>= ` M ) ) |
|
| 62 | 61 1 | eleqtrrdi | |- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. Z ) |
| 63 | 53 62 | syl | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( n + 1 ) e. Z ) |
| 64 | 3 | ralrimiva | |- ( ph -> A. k e. Z ( F ` k ) e. CC ) |
| 65 | fveq2 | |- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
|
| 66 | 65 | eleq1d | |- ( k = ( n + 1 ) -> ( ( F ` k ) e. CC <-> ( F ` ( n + 1 ) ) e. CC ) ) |
| 67 | 66 | rspcv | |- ( ( n + 1 ) e. Z -> ( A. k e. Z ( F ` k ) e. CC -> ( F ` ( n + 1 ) ) e. CC ) ) |
| 68 | 64 67 | mpan9 | |- ( ( ph /\ ( n + 1 ) e. Z ) -> ( F ` ( n + 1 ) ) e. CC ) |
| 69 | 63 68 | syldan | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` ( n + 1 ) ) e. CC ) |
| 70 | 59 60 69 | mulassd | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 71 | 70 | adantr | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 72 | seqp1 | |- ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) = ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
|
| 73 | 72 | adantl | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) = ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 74 | 73 | oveq2d | |- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 75 | 74 | adantr | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 76 | 71 75 | eqtr4d | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) |
| 77 | 56 58 76 | 3eqtrd | |- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) |
| 78 | 77 | exp31 | |- ( ph -> ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
| 79 | 78 | com12 | |- ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( ph -> ( ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
| 80 | 79 | a2d | |- ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( ( ph -> ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ph -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
| 81 | 29 34 39 44 52 80 | uzind4 | |- ( k e. ( ZZ>= ` ( N + 1 ) ) -> ( ph -> ( seq M ( x. , F ) ` k ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) ) |
| 82 | 81 | impcom | |- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` k ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) |
| 83 | 5 9 4 14 16 24 82 | climmulc2 | |- ( ph -> seq M ( x. , F ) ~~> ( ( seq M ( x. , F ) ` N ) x. A ) ) |