This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2div.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| clim2div.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| clim2div.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| clim2div.4 | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝐴 ) | ||
| clim2div.5 | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) | ||
| Assertion | clim2div | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) ⇝ ( 𝐴 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2div.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | clim2div.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | clim2div.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 4 | clim2div.4 | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝐴 ) | |
| 5 | clim2div.5 | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) | |
| 6 | eqid | ⊢ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) | |
| 7 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 8 | 7 1 | eleq2s | ⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ ) |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 10 | 9 | peano2zd | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
| 11 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 12 | 11 1 | eleq2s | ⊢ ( 𝑁 ∈ 𝑍 → 𝑀 ∈ ℤ ) |
| 13 | 2 12 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 14 | 1 13 3 | prodf | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ ) |
| 15 | 14 2 | ffvelcdmd | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
| 16 | 15 5 | reccld | ⊢ ( 𝜑 → ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) ∈ ℂ ) |
| 17 | seqex | ⊢ seq ( 𝑁 + 1 ) ( · , 𝐹 ) ∈ V | |
| 18 | 17 | a1i | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) ∈ V ) |
| 19 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 20 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 22 | 21 1 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ 𝑍 ) |
| 23 | 1 | uztrn2 | ⊢ ( ( ( 𝑁 + 1 ) ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑗 ∈ 𝑍 ) |
| 24 | 22 23 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑗 ∈ 𝑍 ) |
| 25 | 14 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 26 | 24 25 | syldan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 27 | mulcl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) | |
| 28 | 27 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) |
| 29 | mulass | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑘 · 𝑥 ) · 𝑦 ) = ( 𝑘 · ( 𝑥 · 𝑦 ) ) ) | |
| 30 | 29 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( 𝑘 · 𝑥 ) · 𝑦 ) = ( 𝑘 · ( 𝑥 · 𝑦 ) ) ) |
| 31 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) | |
| 32 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 33 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 34 | 33 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
| 35 | 34 3 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 36 | 35 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 37 | 28 30 31 32 36 | seqsplit | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
| 38 | 37 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ) |
| 39 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
| 40 | 1 | uztrn2 | ⊢ ( ( ( 𝑁 + 1 ) ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 41 | 22 40 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 42 | 41 3 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 43 | 6 10 42 | prodf | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) : ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⟶ ℂ ) |
| 44 | 43 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 45 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ≠ 0 ) |
| 46 | 26 39 44 45 | divmuld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) ↔ ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
| 47 | 38 46 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) ) |
| 48 | 26 39 45 | divrec2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) · ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
| 49 | 47 48 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , 𝐹 ) ‘ 𝑗 ) = ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) · ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
| 50 | 6 10 4 16 18 26 49 | climmulc2 | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) ⇝ ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) · 𝐴 ) ) |
| 51 | climcl | ⊢ ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐴 → 𝐴 ∈ ℂ ) | |
| 52 | 4 51 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 53 | 52 15 5 | divrec2d | ⊢ ( 𝜑 → ( 𝐴 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) = ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) · 𝐴 ) ) |
| 54 | 50 53 | breqtrrd | ⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , 𝐹 ) ⇝ ( 𝐴 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) ) |