This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005) (Revised by Mario Carneiro, 14-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cau3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | caubnd | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cau3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | abscl | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) | |
| 3 | 2 | ralimi | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 4 | 1 | r19.29uz | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 5 | 4 | ex | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 6 | 5 | ralimdv | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 7 | 1 | caubnd2 | ⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∃ 𝑧 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) |
| 8 | 6 7 | syl6 | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ∃ 𝑧 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) |
| 9 | fzssuz | ⊢ ( 𝑀 ... 𝑗 ) ⊆ ( ℤ≥ ‘ 𝑀 ) | |
| 10 | 9 1 | sseqtrri | ⊢ ( 𝑀 ... 𝑗 ) ⊆ 𝑍 |
| 11 | ssralv | ⊢ ( ( 𝑀 ... 𝑗 ) ⊆ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) | |
| 12 | 10 11 | ax-mp | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 13 | fzfi | ⊢ ( 𝑀 ... 𝑗 ) ∈ Fin | |
| 14 | fimaxre3 | ⊢ ( ( ( 𝑀 ... 𝑗 ) ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) | |
| 15 | 13 14 | mpan | ⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
| 16 | peano2re | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ ) | |
| 17 | 16 | adantl | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 + 1 ) ∈ ℝ ) |
| 18 | ltp1 | ⊢ ( 𝑥 ∈ ℝ → 𝑥 < ( 𝑥 + 1 ) ) | |
| 19 | 18 | adantl | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → 𝑥 < ( 𝑥 + 1 ) ) |
| 20 | 16 | adantl | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑥 + 1 ) ∈ ℝ ) |
| 21 | lelttr | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ∧ 𝑥 < ( 𝑥 + 1 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < ( 𝑥 + 1 ) ) ) | |
| 22 | 20 21 | mpd3an3 | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ∧ 𝑥 < ( 𝑥 + 1 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < ( 𝑥 + 1 ) ) ) |
| 23 | 19 22 | mpan2d | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < ( 𝑥 + 1 ) ) ) |
| 24 | 23 | expcom | ⊢ ( 𝑥 ∈ ℝ → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < ( 𝑥 + 1 ) ) ) ) |
| 25 | 24 | ralimdv | ⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < ( 𝑥 + 1 ) ) ) ) |
| 26 | 25 | impcom | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < ( 𝑥 + 1 ) ) ) |
| 27 | ralim | ⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < ( 𝑥 + 1 ) ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < ( 𝑥 + 1 ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < ( 𝑥 + 1 ) ) ) |
| 29 | brralrspcev | ⊢ ( ( ( 𝑥 + 1 ) ∈ ℝ ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < ( 𝑥 + 1 ) ) → ∃ 𝑤 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ) | |
| 30 | 17 28 29 | syl6an | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 → ∃ 𝑤 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ) ) |
| 31 | 30 | rexlimdva | ⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 → ∃ 𝑤 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ) ) |
| 32 | 15 31 | mpd | ⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ∃ 𝑤 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ) |
| 33 | 12 32 | syl | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ∃ 𝑤 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ) |
| 34 | max1 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑤 ≤ if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) | |
| 35 | 34 | 3adant3 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → 𝑤 ≤ if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) |
| 36 | simp3 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) | |
| 37 | simp1 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → 𝑤 ∈ ℝ ) | |
| 38 | ifcl | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ∈ ℝ ) | |
| 39 | 38 | ancoms | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ∈ ℝ ) |
| 40 | 39 | 3adant3 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ∈ ℝ ) |
| 41 | ltletr | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ∈ ℝ ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∧ 𝑤 ≤ if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) ) | |
| 42 | 36 37 40 41 | syl3anc | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∧ 𝑤 ≤ if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) ) |
| 43 | 35 42 | mpan2d | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) ) |
| 44 | max2 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑧 ≤ if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) | |
| 45 | 44 | 3adant3 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → 𝑧 ≤ if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) |
| 46 | simp2 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → 𝑧 ∈ ℝ ) | |
| 47 | ltletr | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ∈ ℝ ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 ≤ if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) ) | |
| 48 | 36 46 40 47 | syl3anc | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 ≤ if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) ) |
| 49 | 45 48 | mpan2d | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) ) |
| 50 | 43 49 | jaod | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) ) |
| 51 | 50 | 3expia | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) ) ) |
| 52 | 51 | ralimdv | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ∀ 𝑘 ∈ 𝑍 ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) ) ) |
| 53 | ralim | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) → ( ∀ 𝑘 ∈ 𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) ) | |
| 54 | 52 53 | syl6 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( ∀ 𝑘 ∈ 𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) ) ) |
| 55 | brralrspcev | ⊢ ( ( if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) | |
| 56 | 55 | ex | ⊢ ( if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) ∈ ℝ → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) |
| 57 | 39 56 | syl | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < if ( 𝑤 ≤ 𝑧 , 𝑧 , 𝑤 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) |
| 58 | 54 57 | syl6d | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( ∀ 𝑘 ∈ 𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) ) |
| 59 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 60 | 1 59 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 61 | 60 | sseli | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 62 | 60 | sseli | ⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
| 63 | uztric | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) | |
| 64 | 61 62 63 | syl2anr | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
| 65 | simpr | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) | |
| 66 | 65 1 | eleqtrdi | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 67 | elfzuzb | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) | |
| 68 | 67 | baib | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↔ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) |
| 69 | 66 68 | syl | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↔ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) |
| 70 | 69 | orbi1d | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ↔ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ) |
| 71 | 64 70 | mpbird | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
| 72 | 71 | ex | ⊢ ( 𝑗 ∈ 𝑍 → ( 𝑘 ∈ 𝑍 → ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ) |
| 73 | pm3.48 | ⊢ ( ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) ) | |
| 74 | 72 73 | syl9 | ⊢ ( 𝑗 ∈ 𝑍 → ( ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) → ( 𝑘 ∈ 𝑍 → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) ) ) |
| 75 | 74 | alimdv | ⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) → ∀ 𝑘 ( 𝑘 ∈ 𝑍 → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) ) ) |
| 76 | df-ral | ⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ↔ ∀ 𝑘 ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ) ) | |
| 77 | df-ral | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ↔ ∀ 𝑘 ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) | |
| 78 | 76 77 | anbi12i | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ↔ ( ∀ 𝑘 ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ) ∧ ∀ 𝑘 ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) ) |
| 79 | 19.26 | ⊢ ( ∀ 𝑘 ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) ↔ ( ∀ 𝑘 ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ) ∧ ∀ 𝑘 ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) ) | |
| 80 | 78 79 | bitr4i | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ↔ ∀ 𝑘 ( ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) ) |
| 81 | df-ral | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ↔ ∀ 𝑘 ( 𝑘 ∈ 𝑍 → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) ) | |
| 82 | 75 80 81 | 3imtr4g | ⊢ ( 𝑗 ∈ 𝑍 → ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) → ∀ 𝑘 ∈ 𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) ) |
| 83 | 82 | 3impib | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) → ∀ 𝑘 ∈ 𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) ) |
| 84 | 83 | imim1i | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) → ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) |
| 85 | 84 | 3expd | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 ∨ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) → ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) ) ) |
| 86 | 58 85 | syl6 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) ) ) ) |
| 87 | 86 | com23 | ⊢ ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) ) ) ) |
| 88 | 87 | expimpd | ⊢ ( 𝑤 ∈ ℝ → ( ( 𝑧 ∈ ℝ ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) ) ) ) |
| 89 | 88 | com3r | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( 𝑤 ∈ ℝ → ( ( 𝑧 ∈ ℝ ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) ) ) ) |
| 90 | 89 | com34 | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( 𝑤 ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 → ( ( 𝑧 ∈ ℝ ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) ) ) ) |
| 91 | 90 | rexlimdv | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( ∃ 𝑤 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑤 → ( ( 𝑧 ∈ ℝ ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) ) ) |
| 92 | 33 91 | mpd | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( ( 𝑧 ∈ ℝ ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) ) |
| 93 | 92 | rexlimdvv | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ → ( ∃ 𝑧 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑧 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) |
| 94 | 3 8 93 | sylsyld | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) ) |
| 95 | 94 | imp | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑦 ) |