This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *3.48 of WhiteheadRussell p. 114. (Contributed by NM, 28-Jan-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm3.48 | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜃 ) ) → ( ( 𝜑 ∨ 𝜒 ) → ( 𝜓 ∨ 𝜃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | ⊢ ( 𝜓 → ( 𝜓 ∨ 𝜃 ) ) | |
| 2 | 1 | imim2i | ⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → ( 𝜓 ∨ 𝜃 ) ) ) |
| 3 | olc | ⊢ ( 𝜃 → ( 𝜓 ∨ 𝜃 ) ) | |
| 4 | 3 | imim2i | ⊢ ( ( 𝜒 → 𝜃 ) → ( 𝜒 → ( 𝜓 ∨ 𝜃 ) ) ) |
| 5 | 2 4 | jaao | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜒 → 𝜃 ) ) → ( ( 𝜑 ∨ 𝜒 ) → ( 𝜓 ∨ 𝜃 ) ) ) |