This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cardprc . (Contributed by Mario Carneiro, 22-Jan-2013) (Revised by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cardprclem.1 | ⊢ 𝐴 = { 𝑥 ∣ ( card ‘ 𝑥 ) = 𝑥 } | |
| Assertion | cardprclem | ⊢ ¬ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardprclem.1 | ⊢ 𝐴 = { 𝑥 ∣ ( card ‘ 𝑥 ) = 𝑥 } | |
| 2 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ { 𝑥 ∣ ( card ‘ 𝑥 ) = 𝑥 } ) |
| 3 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ ( card ‘ 𝑥 ) = 𝑥 } ↔ ( card ‘ 𝑥 ) = 𝑥 ) | |
| 4 | iscard | ⊢ ( ( card ‘ 𝑥 ) = 𝑥 ↔ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≺ 𝑥 ) ) | |
| 5 | 2 3 4 | 3bitri | ⊢ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ≺ 𝑥 ) ) |
| 6 | 5 | simplbi | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ On ) |
| 7 | 6 | ssriv | ⊢ 𝐴 ⊆ On |
| 8 | ssonuni | ⊢ ( 𝐴 ∈ V → ( 𝐴 ⊆ On → ∪ 𝐴 ∈ On ) ) | |
| 9 | 7 8 | mpi | ⊢ ( 𝐴 ∈ V → ∪ 𝐴 ∈ On ) |
| 10 | domrefg | ⊢ ( ∪ 𝐴 ∈ On → ∪ 𝐴 ≼ ∪ 𝐴 ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐴 ∈ V → ∪ 𝐴 ≼ ∪ 𝐴 ) |
| 12 | elharval | ⊢ ( ∪ 𝐴 ∈ ( har ‘ ∪ 𝐴 ) ↔ ( ∪ 𝐴 ∈ On ∧ ∪ 𝐴 ≼ ∪ 𝐴 ) ) | |
| 13 | 9 11 12 | sylanbrc | ⊢ ( 𝐴 ∈ V → ∪ 𝐴 ∈ ( har ‘ ∪ 𝐴 ) ) |
| 14 | 7 | sseli | ⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ On ) |
| 15 | domrefg | ⊢ ( 𝑧 ∈ On → 𝑧 ≼ 𝑧 ) | |
| 16 | 15 | ancli | ⊢ ( 𝑧 ∈ On → ( 𝑧 ∈ On ∧ 𝑧 ≼ 𝑧 ) ) |
| 17 | elharval | ⊢ ( 𝑧 ∈ ( har ‘ 𝑧 ) ↔ ( 𝑧 ∈ On ∧ 𝑧 ≼ 𝑧 ) ) | |
| 18 | 16 17 | sylibr | ⊢ ( 𝑧 ∈ On → 𝑧 ∈ ( har ‘ 𝑧 ) ) |
| 19 | 14 18 | syl | ⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ( har ‘ 𝑧 ) ) |
| 20 | harcard | ⊢ ( card ‘ ( har ‘ 𝑧 ) ) = ( har ‘ 𝑧 ) | |
| 21 | fvex | ⊢ ( har ‘ 𝑧 ) ∈ V | |
| 22 | fveq2 | ⊢ ( 𝑥 = ( har ‘ 𝑧 ) → ( card ‘ 𝑥 ) = ( card ‘ ( har ‘ 𝑧 ) ) ) | |
| 23 | id | ⊢ ( 𝑥 = ( har ‘ 𝑧 ) → 𝑥 = ( har ‘ 𝑧 ) ) | |
| 24 | 22 23 | eqeq12d | ⊢ ( 𝑥 = ( har ‘ 𝑧 ) → ( ( card ‘ 𝑥 ) = 𝑥 ↔ ( card ‘ ( har ‘ 𝑧 ) ) = ( har ‘ 𝑧 ) ) ) |
| 25 | 21 24 1 | elab2 | ⊢ ( ( har ‘ 𝑧 ) ∈ 𝐴 ↔ ( card ‘ ( har ‘ 𝑧 ) ) = ( har ‘ 𝑧 ) ) |
| 26 | 20 25 | mpbir | ⊢ ( har ‘ 𝑧 ) ∈ 𝐴 |
| 27 | eleq2 | ⊢ ( 𝑤 = ( har ‘ 𝑧 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ ( har ‘ 𝑧 ) ) ) | |
| 28 | eleq1 | ⊢ ( 𝑤 = ( har ‘ 𝑧 ) → ( 𝑤 ∈ 𝐴 ↔ ( har ‘ 𝑧 ) ∈ 𝐴 ) ) | |
| 29 | 27 28 | anbi12d | ⊢ ( 𝑤 = ( har ‘ 𝑧 ) → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ↔ ( 𝑧 ∈ ( har ‘ 𝑧 ) ∧ ( har ‘ 𝑧 ) ∈ 𝐴 ) ) ) |
| 30 | 21 29 | spcev | ⊢ ( ( 𝑧 ∈ ( har ‘ 𝑧 ) ∧ ( har ‘ 𝑧 ) ∈ 𝐴 ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ) |
| 31 | 19 26 30 | sylancl | ⊢ ( 𝑧 ∈ 𝐴 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ) |
| 32 | eluni | ⊢ ( 𝑧 ∈ ∪ 𝐴 ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ) | |
| 33 | 31 32 | sylibr | ⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ∪ 𝐴 ) |
| 34 | 33 | ssriv | ⊢ 𝐴 ⊆ ∪ 𝐴 |
| 35 | harcard | ⊢ ( card ‘ ( har ‘ ∪ 𝐴 ) ) = ( har ‘ ∪ 𝐴 ) | |
| 36 | fvex | ⊢ ( har ‘ ∪ 𝐴 ) ∈ V | |
| 37 | fveq2 | ⊢ ( 𝑥 = ( har ‘ ∪ 𝐴 ) → ( card ‘ 𝑥 ) = ( card ‘ ( har ‘ ∪ 𝐴 ) ) ) | |
| 38 | id | ⊢ ( 𝑥 = ( har ‘ ∪ 𝐴 ) → 𝑥 = ( har ‘ ∪ 𝐴 ) ) | |
| 39 | 37 38 | eqeq12d | ⊢ ( 𝑥 = ( har ‘ ∪ 𝐴 ) → ( ( card ‘ 𝑥 ) = 𝑥 ↔ ( card ‘ ( har ‘ ∪ 𝐴 ) ) = ( har ‘ ∪ 𝐴 ) ) ) |
| 40 | 36 39 1 | elab2 | ⊢ ( ( har ‘ ∪ 𝐴 ) ∈ 𝐴 ↔ ( card ‘ ( har ‘ ∪ 𝐴 ) ) = ( har ‘ ∪ 𝐴 ) ) |
| 41 | 35 40 | mpbir | ⊢ ( har ‘ ∪ 𝐴 ) ∈ 𝐴 |
| 42 | 34 41 | sselii | ⊢ ( har ‘ ∪ 𝐴 ) ∈ ∪ 𝐴 |
| 43 | 13 42 | jctir | ⊢ ( 𝐴 ∈ V → ( ∪ 𝐴 ∈ ( har ‘ ∪ 𝐴 ) ∧ ( har ‘ ∪ 𝐴 ) ∈ ∪ 𝐴 ) ) |
| 44 | eloni | ⊢ ( ∪ 𝐴 ∈ On → Ord ∪ 𝐴 ) | |
| 45 | ordn2lp | ⊢ ( Ord ∪ 𝐴 → ¬ ( ∪ 𝐴 ∈ ( har ‘ ∪ 𝐴 ) ∧ ( har ‘ ∪ 𝐴 ) ∈ ∪ 𝐴 ) ) | |
| 46 | 9 44 45 | 3syl | ⊢ ( 𝐴 ∈ V → ¬ ( ∪ 𝐴 ∈ ( har ‘ ∪ 𝐴 ) ∧ ( har ‘ ∪ 𝐴 ) ∈ ∪ 𝐴 ) ) |
| 47 | 43 46 | pm2.65i | ⊢ ¬ 𝐴 ∈ V |