This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of well-orders of a set A strictly dominates A . A stronger form of canth2 . Corollary 1.4(b) of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | canthwe.1 | ⊢ 𝑂 = { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } | |
| Assertion | canthwe | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canthwe.1 | ⊢ 𝑂 = { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } | |
| 2 | simp1 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑥 ⊆ 𝐴 ) | |
| 3 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 4 | 2 3 | sylibr | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 5 | simp2 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) | |
| 6 | xpss12 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑥 × 𝑥 ) ⊆ ( 𝐴 × 𝐴 ) ) | |
| 7 | 2 2 6 | syl2anc | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → ( 𝑥 × 𝑥 ) ⊆ ( 𝐴 × 𝐴 ) ) |
| 8 | 5 7 | sstrd | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑟 ⊆ ( 𝐴 × 𝐴 ) ) |
| 9 | velpw | ⊢ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ↔ 𝑟 ⊆ ( 𝐴 × 𝐴 ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) |
| 11 | 4 10 | jca | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) ) |
| 12 | 11 | ssopab2i | ⊢ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ⊆ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) } |
| 13 | df-xp | ⊢ ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) = { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐴 ) ) } | |
| 14 | 12 1 13 | 3sstr4i | ⊢ 𝑂 ⊆ ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) |
| 15 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 16 | sqxpexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 × 𝐴 ) ∈ V ) | |
| 17 | 16 | pwexd | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 ( 𝐴 × 𝐴 ) ∈ V ) |
| 18 | 15 17 | xpexd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) ∈ V ) |
| 19 | ssexg | ⊢ ( ( 𝑂 ⊆ ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) ∧ ( 𝒫 𝐴 × 𝒫 ( 𝐴 × 𝐴 ) ) ∈ V ) → 𝑂 ∈ V ) | |
| 20 | 14 18 19 | sylancr | ⊢ ( 𝐴 ∈ 𝑉 → 𝑂 ∈ V ) |
| 21 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ 𝐴 ) | |
| 22 | 21 | snssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴 ) → { 𝑢 } ⊆ 𝐴 ) |
| 23 | 0ss | ⊢ ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) | |
| 24 | 23 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴 ) → ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) ) |
| 25 | rel0 | ⊢ Rel ∅ | |
| 26 | br0 | ⊢ ¬ 𝑢 ∅ 𝑢 | |
| 27 | wesn | ⊢ ( Rel ∅ → ( ∅ We { 𝑢 } ↔ ¬ 𝑢 ∅ 𝑢 ) ) | |
| 28 | 26 27 | mpbiri | ⊢ ( Rel ∅ → ∅ We { 𝑢 } ) |
| 29 | 25 28 | mp1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴 ) → ∅ We { 𝑢 } ) |
| 30 | vsnex | ⊢ { 𝑢 } ∈ V | |
| 31 | 0ex | ⊢ ∅ ∈ V | |
| 32 | simpl | ⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → 𝑥 = { 𝑢 } ) | |
| 33 | 32 | sseq1d | ⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( 𝑥 ⊆ 𝐴 ↔ { 𝑢 } ⊆ 𝐴 ) ) |
| 34 | simpr | ⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → 𝑟 = ∅ ) | |
| 35 | 32 | sqxpeqd | ⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( 𝑥 × 𝑥 ) = ( { 𝑢 } × { 𝑢 } ) ) |
| 36 | 34 35 | sseq12d | ⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) ) ) |
| 37 | 34 32 | weeq12d | ⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( 𝑟 We 𝑥 ↔ ∅ We { 𝑢 } ) ) |
| 38 | 33 36 37 | 3anbi123d | ⊢ ( ( 𝑥 = { 𝑢 } ∧ 𝑟 = ∅ ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( { 𝑢 } ⊆ 𝐴 ∧ ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) ∧ ∅ We { 𝑢 } ) ) ) |
| 39 | 30 31 38 | opelopaba | ⊢ ( 〈 { 𝑢 } , ∅ 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( { 𝑢 } ⊆ 𝐴 ∧ ∅ ⊆ ( { 𝑢 } × { 𝑢 } ) ∧ ∅ We { 𝑢 } ) ) |
| 40 | 22 24 29 39 | syl3anbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴 ) → 〈 { 𝑢 } , ∅ 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ) |
| 41 | 40 1 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑢 ∈ 𝐴 ) → 〈 { 𝑢 } , ∅ 〉 ∈ 𝑂 ) |
| 42 | 41 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑢 ∈ 𝐴 → 〈 { 𝑢 } , ∅ 〉 ∈ 𝑂 ) ) |
| 43 | eqid | ⊢ ∅ = ∅ | |
| 44 | vsnex | ⊢ { 𝑣 } ∈ V | |
| 45 | 44 31 | opth2 | ⊢ ( 〈 { 𝑢 } , ∅ 〉 = 〈 { 𝑣 } , ∅ 〉 ↔ ( { 𝑢 } = { 𝑣 } ∧ ∅ = ∅ ) ) |
| 46 | 43 45 | mpbiran2 | ⊢ ( 〈 { 𝑢 } , ∅ 〉 = 〈 { 𝑣 } , ∅ 〉 ↔ { 𝑢 } = { 𝑣 } ) |
| 47 | sneqbg | ⊢ ( 𝑢 ∈ V → ( { 𝑢 } = { 𝑣 } ↔ 𝑢 = 𝑣 ) ) | |
| 48 | 47 | elv | ⊢ ( { 𝑢 } = { 𝑣 } ↔ 𝑢 = 𝑣 ) |
| 49 | 46 48 | bitri | ⊢ ( 〈 { 𝑢 } , ∅ 〉 = 〈 { 𝑣 } , ∅ 〉 ↔ 𝑢 = 𝑣 ) |
| 50 | 49 | 2a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( 〈 { 𝑢 } , ∅ 〉 = 〈 { 𝑣 } , ∅ 〉 ↔ 𝑢 = 𝑣 ) ) ) |
| 51 | 42 50 | dom2d | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑂 ∈ V → 𝐴 ≼ 𝑂 ) ) |
| 52 | 20 51 | mpd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ 𝑂 ) |
| 53 | eqid | ⊢ { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } | |
| 54 | 53 | fpwwe2cbv | ⊢ { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑤 ] ( 𝑤 𝑓 ( 𝑟 ∩ ( 𝑤 × 𝑤 ) ) ) = 𝑦 ) ) } |
| 55 | eqid | ⊢ ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } = ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } | |
| 56 | eqid | ⊢ ( ◡ ( { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ‘ ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ) “ { ( ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } 𝑓 ( { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ‘ ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ) ) } ) = ( ◡ ( { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ‘ ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ) “ { ( ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } 𝑓 ( { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ‘ ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝑓 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } ) ) } ) | |
| 57 | 1 54 55 56 | canthwelem | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝑓 : 𝑂 –1-1→ 𝐴 ) |
| 58 | f1of1 | ⊢ ( 𝑓 : 𝑂 –1-1-onto→ 𝐴 → 𝑓 : 𝑂 –1-1→ 𝐴 ) | |
| 59 | 57 58 | nsyl | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝑓 : 𝑂 –1-1-onto→ 𝐴 ) |
| 60 | 59 | nexdv | ⊢ ( 𝐴 ∈ 𝑉 → ¬ ∃ 𝑓 𝑓 : 𝑂 –1-1-onto→ 𝐴 ) |
| 61 | ensym | ⊢ ( 𝐴 ≈ 𝑂 → 𝑂 ≈ 𝐴 ) | |
| 62 | bren | ⊢ ( 𝑂 ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 𝑂 –1-1-onto→ 𝐴 ) | |
| 63 | 61 62 | sylib | ⊢ ( 𝐴 ≈ 𝑂 → ∃ 𝑓 𝑓 : 𝑂 –1-1-onto→ 𝐴 ) |
| 64 | 60 63 | nsyl | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝐴 ≈ 𝑂 ) |
| 65 | brsdom | ⊢ ( 𝐴 ≺ 𝑂 ↔ ( 𝐴 ≼ 𝑂 ∧ ¬ 𝐴 ≈ 𝑂 ) ) | |
| 66 | 52 64 65 | sylanbrc | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ 𝑂 ) |