This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of well-orders of a set A strictly dominates A . A stronger form of canth2 . Corollary 1.4(b) of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | canthwe.1 | |- O = { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } |
|
| Assertion | canthwe | |- ( A e. V -> A ~< O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canthwe.1 | |- O = { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } |
|
| 2 | simp1 | |- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> x C_ A ) |
|
| 3 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 4 | 2 3 | sylibr | |- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> x e. ~P A ) |
| 5 | simp2 | |- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> r C_ ( x X. x ) ) |
|
| 6 | xpss12 | |- ( ( x C_ A /\ x C_ A ) -> ( x X. x ) C_ ( A X. A ) ) |
|
| 7 | 2 2 6 | syl2anc | |- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> ( x X. x ) C_ ( A X. A ) ) |
| 8 | 5 7 | sstrd | |- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> r C_ ( A X. A ) ) |
| 9 | velpw | |- ( r e. ~P ( A X. A ) <-> r C_ ( A X. A ) ) |
|
| 10 | 8 9 | sylibr | |- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> r e. ~P ( A X. A ) ) |
| 11 | 4 10 | jca | |- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> ( x e. ~P A /\ r e. ~P ( A X. A ) ) ) |
| 12 | 11 | ssopab2i | |- { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } C_ { <. x , r >. | ( x e. ~P A /\ r e. ~P ( A X. A ) ) } |
| 13 | df-xp | |- ( ~P A X. ~P ( A X. A ) ) = { <. x , r >. | ( x e. ~P A /\ r e. ~P ( A X. A ) ) } |
|
| 14 | 12 1 13 | 3sstr4i | |- O C_ ( ~P A X. ~P ( A X. A ) ) |
| 15 | pwexg | |- ( A e. V -> ~P A e. _V ) |
|
| 16 | sqxpexg | |- ( A e. V -> ( A X. A ) e. _V ) |
|
| 17 | 16 | pwexd | |- ( A e. V -> ~P ( A X. A ) e. _V ) |
| 18 | 15 17 | xpexd | |- ( A e. V -> ( ~P A X. ~P ( A X. A ) ) e. _V ) |
| 19 | ssexg | |- ( ( O C_ ( ~P A X. ~P ( A X. A ) ) /\ ( ~P A X. ~P ( A X. A ) ) e. _V ) -> O e. _V ) |
|
| 20 | 14 18 19 | sylancr | |- ( A e. V -> O e. _V ) |
| 21 | simpr | |- ( ( A e. V /\ u e. A ) -> u e. A ) |
|
| 22 | 21 | snssd | |- ( ( A e. V /\ u e. A ) -> { u } C_ A ) |
| 23 | 0ss | |- (/) C_ ( { u } X. { u } ) |
|
| 24 | 23 | a1i | |- ( ( A e. V /\ u e. A ) -> (/) C_ ( { u } X. { u } ) ) |
| 25 | rel0 | |- Rel (/) |
|
| 26 | br0 | |- -. u (/) u |
|
| 27 | wesn | |- ( Rel (/) -> ( (/) We { u } <-> -. u (/) u ) ) |
|
| 28 | 26 27 | mpbiri | |- ( Rel (/) -> (/) We { u } ) |
| 29 | 25 28 | mp1i | |- ( ( A e. V /\ u e. A ) -> (/) We { u } ) |
| 30 | vsnex | |- { u } e. _V |
|
| 31 | 0ex | |- (/) e. _V |
|
| 32 | simpl | |- ( ( x = { u } /\ r = (/) ) -> x = { u } ) |
|
| 33 | 32 | sseq1d | |- ( ( x = { u } /\ r = (/) ) -> ( x C_ A <-> { u } C_ A ) ) |
| 34 | simpr | |- ( ( x = { u } /\ r = (/) ) -> r = (/) ) |
|
| 35 | 32 | sqxpeqd | |- ( ( x = { u } /\ r = (/) ) -> ( x X. x ) = ( { u } X. { u } ) ) |
| 36 | 34 35 | sseq12d | |- ( ( x = { u } /\ r = (/) ) -> ( r C_ ( x X. x ) <-> (/) C_ ( { u } X. { u } ) ) ) |
| 37 | 34 32 | weeq12d | |- ( ( x = { u } /\ r = (/) ) -> ( r We x <-> (/) We { u } ) ) |
| 38 | 33 36 37 | 3anbi123d | |- ( ( x = { u } /\ r = (/) ) -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) <-> ( { u } C_ A /\ (/) C_ ( { u } X. { u } ) /\ (/) We { u } ) ) ) |
| 39 | 30 31 38 | opelopaba | |- ( <. { u } , (/) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } <-> ( { u } C_ A /\ (/) C_ ( { u } X. { u } ) /\ (/) We { u } ) ) |
| 40 | 22 24 29 39 | syl3anbrc | |- ( ( A e. V /\ u e. A ) -> <. { u } , (/) >. e. { <. x , r >. | ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) } ) |
| 41 | 40 1 | eleqtrrdi | |- ( ( A e. V /\ u e. A ) -> <. { u } , (/) >. e. O ) |
| 42 | 41 | ex | |- ( A e. V -> ( u e. A -> <. { u } , (/) >. e. O ) ) |
| 43 | eqid | |- (/) = (/) |
|
| 44 | vsnex | |- { v } e. _V |
|
| 45 | 44 31 | opth2 | |- ( <. { u } , (/) >. = <. { v } , (/) >. <-> ( { u } = { v } /\ (/) = (/) ) ) |
| 46 | 43 45 | mpbiran2 | |- ( <. { u } , (/) >. = <. { v } , (/) >. <-> { u } = { v } ) |
| 47 | sneqbg | |- ( u e. _V -> ( { u } = { v } <-> u = v ) ) |
|
| 48 | 47 | elv | |- ( { u } = { v } <-> u = v ) |
| 49 | 46 48 | bitri | |- ( <. { u } , (/) >. = <. { v } , (/) >. <-> u = v ) |
| 50 | 49 | 2a1i | |- ( A e. V -> ( ( u e. A /\ v e. A ) -> ( <. { u } , (/) >. = <. { v } , (/) >. <-> u = v ) ) ) |
| 51 | 42 50 | dom2d | |- ( A e. V -> ( O e. _V -> A ~<_ O ) ) |
| 52 | 20 51 | mpd | |- ( A e. V -> A ~<_ O ) |
| 53 | eqid | |- { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } |
|
| 54 | 53 | fpwwe2cbv | |- { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / w ]. ( w f ( r i^i ( w X. w ) ) ) = y ) ) } |
| 55 | eqid | |- U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } = U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } |
|
| 56 | eqid | |- ( `' ( { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ` U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ) " { ( U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } f ( { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ` U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ) ) } ) = ( `' ( { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ` U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ) " { ( U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } f ( { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ` U. dom { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v f ( s i^i ( v X. v ) ) ) = z ) ) } ) ) } ) |
|
| 57 | 1 54 55 56 | canthwelem | |- ( A e. V -> -. f : O -1-1-> A ) |
| 58 | f1of1 | |- ( f : O -1-1-onto-> A -> f : O -1-1-> A ) |
|
| 59 | 57 58 | nsyl | |- ( A e. V -> -. f : O -1-1-onto-> A ) |
| 60 | 59 | nexdv | |- ( A e. V -> -. E. f f : O -1-1-onto-> A ) |
| 61 | ensym | |- ( A ~~ O -> O ~~ A ) |
|
| 62 | bren | |- ( O ~~ A <-> E. f f : O -1-1-onto-> A ) |
|
| 63 | 61 62 | sylib | |- ( A ~~ O -> E. f f : O -1-1-onto-> A ) |
| 64 | 60 63 | nsyl | |- ( A e. V -> -. A ~~ O ) |
| 65 | brsdom | |- ( A ~< O <-> ( A ~<_ O /\ -. A ~~ O ) ) |
|
| 66 | 52 64 65 | sylanbrc | |- ( A e. V -> A ~< O ) |