This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for canthwe . (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | canthwe.1 | ⊢ 𝑂 = { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } | |
| canthwe.2 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | ||
| canthwe.3 | ⊢ 𝐵 = ∪ dom 𝑊 | ||
| canthwe.4 | ⊢ 𝐶 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) | ||
| Assertion | canthwelem | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝐹 : 𝑂 –1-1→ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canthwe.1 | ⊢ 𝑂 = { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } | |
| 2 | canthwe.2 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| 3 | canthwe.3 | ⊢ 𝐵 = ∪ dom 𝑊 | |
| 4 | canthwe.4 | ⊢ 𝐶 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) | |
| 5 | eqid | ⊢ 𝐵 = 𝐵 | |
| 6 | eqid | ⊢ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) | |
| 7 | 5 6 | pm3.2i | ⊢ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐴 ∈ 𝑉 ) | |
| 9 | df-ov | ⊢ ( 𝑥 𝐹 𝑟 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑟 〉 ) | |
| 10 | f1f | ⊢ ( 𝐹 : 𝑂 –1-1→ 𝐴 → 𝐹 : 𝑂 ⟶ 𝐴 ) | |
| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → 𝐹 : 𝑂 ⟶ 𝐴 ) |
| 12 | simpr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) | |
| 13 | opabidw | ⊢ ( 〈 𝑥 , 𝑟 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) | |
| 14 | 12 13 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → 〈 𝑥 , 𝑟 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ) |
| 15 | 14 1 | eleqtrrdi | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → 〈 𝑥 , 𝑟 〉 ∈ 𝑂 ) |
| 16 | 11 15 | ffvelcdmd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝐹 ‘ 〈 𝑥 , 𝑟 〉 ) ∈ 𝐴 ) |
| 17 | 9 16 | eqeltrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
| 18 | 2 8 17 3 | fpwwe2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) ↔ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) ) ) |
| 19 | 7 18 | mpbiri | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) ) |
| 20 | 19 | simprd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) |
| 21 | 4 4 | xpeq12i | ⊢ ( 𝐶 × 𝐶 ) = ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) |
| 22 | 21 | ineq2i | ⊢ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) = ( ( 𝑊 ‘ 𝐵 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) |
| 23 | 4 22 | oveq12i | ⊢ ( 𝐶 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) = ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) ) |
| 24 | 19 | simpld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ) |
| 25 | 2 8 24 | fpwwe2lem3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) ∧ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) → ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) ) = ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
| 26 | 20 25 | mpdan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) × ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) ) ) = ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
| 27 | 23 26 | eqtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐶 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) = ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
| 28 | df-ov | ⊢ ( 𝐶 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) = ( 𝐹 ‘ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ) | |
| 29 | df-ov | ⊢ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) = ( 𝐹 ‘ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) | |
| 30 | 27 28 29 | 3eqtr3g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐹 ‘ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ) = ( 𝐹 ‘ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ) |
| 31 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐹 : 𝑂 –1-1→ 𝐴 ) | |
| 32 | cnvimass | ⊢ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ⊆ dom ( 𝑊 ‘ 𝐵 ) | |
| 33 | 2 8 | fpwwe2lem2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 [ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 34 | 24 33 | mpbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 [ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 35 | 34 | simpld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ) |
| 36 | 35 | simprd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) |
| 37 | dmss | ⊢ ( ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) → dom ( 𝑊 ‘ 𝐵 ) ⊆ dom ( 𝐵 × 𝐵 ) ) | |
| 38 | 36 37 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → dom ( 𝑊 ‘ 𝐵 ) ⊆ dom ( 𝐵 × 𝐵 ) ) |
| 39 | dmxpss | ⊢ dom ( 𝐵 × 𝐵 ) ⊆ 𝐵 | |
| 40 | 38 39 | sstrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → dom ( 𝑊 ‘ 𝐵 ) ⊆ 𝐵 ) |
| 41 | 32 40 | sstrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ⊆ 𝐵 ) |
| 42 | 4 41 | eqsstrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐶 ⊆ 𝐵 ) |
| 43 | 35 | simpld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 44 | 42 43 | sstrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐶 ⊆ 𝐴 ) |
| 45 | inss2 | ⊢ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) | |
| 46 | 45 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ) |
| 47 | 34 | simprd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 [ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
| 48 | 47 | simpld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) We 𝐵 ) |
| 49 | wess | ⊢ ( 𝐶 ⊆ 𝐵 → ( ( 𝑊 ‘ 𝐵 ) We 𝐵 → ( 𝑊 ‘ 𝐵 ) We 𝐶 ) ) | |
| 50 | 42 48 49 | sylc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) We 𝐶 ) |
| 51 | weinxp | ⊢ ( ( 𝑊 ‘ 𝐵 ) We 𝐶 ↔ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) | |
| 52 | 50 51 | sylib | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) |
| 53 | fvex | ⊢ ( 𝑊 ‘ 𝐵 ) ∈ V | |
| 54 | 53 | cnvex | ⊢ ◡ ( 𝑊 ‘ 𝐵 ) ∈ V |
| 55 | 54 | imaex | ⊢ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ∈ V |
| 56 | 4 55 | eqeltri | ⊢ 𝐶 ∈ V |
| 57 | 53 | inex1 | ⊢ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ∈ V |
| 58 | simpl | ⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → 𝑥 = 𝐶 ) | |
| 59 | 58 | sseq1d | ⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑥 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐴 ) ) |
| 60 | simpr | ⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) | |
| 61 | 58 | sqxpeqd | ⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑥 × 𝑥 ) = ( 𝐶 × 𝐶 ) ) |
| 62 | 60 61 | sseq12d | ⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ) ) |
| 63 | 60 58 | weeq12d | ⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( 𝑟 We 𝑥 ↔ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) ) |
| 64 | 59 62 63 | 3anbi123d | ⊢ ( ( 𝑥 = 𝐶 ∧ 𝑟 = ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝐶 ⊆ 𝐴 ∧ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ∧ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) ) ) |
| 65 | 56 57 64 | opelopaba | ⊢ ( 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝐶 ⊆ 𝐴 ∧ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) ⊆ ( 𝐶 × 𝐶 ) ∧ ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) We 𝐶 ) ) |
| 66 | 44 46 52 65 | syl3anbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ) |
| 67 | 66 1 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ∈ 𝑂 ) |
| 68 | 8 43 | ssexd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐵 ∈ V ) |
| 69 | 53 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) ∈ V ) |
| 70 | simpl | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → 𝑥 = 𝐵 ) | |
| 71 | 70 | sseq1d | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( 𝑥 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
| 72 | simpr | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → 𝑟 = ( 𝑊 ‘ 𝐵 ) ) | |
| 73 | 70 | sqxpeqd | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( 𝑥 × 𝑥 ) = ( 𝐵 × 𝐵 ) ) |
| 74 | 72 73 | sseq12d | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ) |
| 75 | 72 70 | weeq12d | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( 𝑟 We 𝑥 ↔ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) |
| 76 | 71 74 75 | 3anbi123d | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑟 = ( 𝑊 ‘ 𝐵 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) ) |
| 77 | 76 | opelopabga | ⊢ ( ( 𝐵 ∈ V ∧ ( 𝑊 ‘ 𝐵 ) ∈ V ) → ( 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) ) |
| 78 | 68 69 77 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ↔ ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) ) |
| 79 | 43 36 48 78 | mpbir3and | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ { 〈 𝑥 , 𝑟 〉 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) } ) |
| 80 | 79 1 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ 𝑂 ) |
| 81 | f1fveq | ⊢ ( ( 𝐹 : 𝑂 –1-1→ 𝐴 ∧ ( 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ∈ 𝑂 ∧ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ∈ 𝑂 ) ) → ( ( 𝐹 ‘ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ) = ( 𝐹 ‘ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ↔ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 = 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ) | |
| 82 | 31 67 80 81 | syl12anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝐹 ‘ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 ) = ( 𝐹 ‘ 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ↔ 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 = 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) ) |
| 83 | 30 82 | mpbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 = 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 ) |
| 84 | 56 57 | opth1 | ⊢ ( 〈 𝐶 , ( ( 𝑊 ‘ 𝐵 ) ∩ ( 𝐶 × 𝐶 ) ) 〉 = 〈 𝐵 , ( 𝑊 ‘ 𝐵 ) 〉 → 𝐶 = 𝐵 ) |
| 85 | 83 84 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → 𝐶 = 𝐵 ) |
| 86 | 20 85 | eleqtrrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐶 ) |
| 87 | 86 4 | eleqtrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ) |
| 88 | ovex | ⊢ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ V | |
| 89 | 88 | eliniseg | ⊢ ( ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 → ( ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ↔ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) ) |
| 90 | 20 89 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) } ) ↔ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) ) |
| 91 | 87 90 | mpbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
| 92 | weso | ⊢ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 → ( 𝑊 ‘ 𝐵 ) Or 𝐵 ) | |
| 93 | 48 92 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ( 𝑊 ‘ 𝐵 ) Or 𝐵 ) |
| 94 | sonr | ⊢ ( ( ( 𝑊 ‘ 𝐵 ) Or 𝐵 ∧ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ∈ 𝐵 ) → ¬ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) | |
| 95 | 93 20 94 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝑂 –1-1→ 𝐴 ) → ¬ ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ( 𝑊 ‘ 𝐵 ) ( 𝐵 𝐹 ( 𝑊 ‘ 𝐵 ) ) ) |
| 96 | 91 95 | pm2.65da | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝐹 : 𝑂 –1-1→ 𝐴 ) |