This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a binary relation holds for the result of an operation which is a result of an operation, the involved classes are sets. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Proof shortened by AV, 3-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bropopvvv.o | ⊢ 𝑂 = ( 𝑣 ∈ V , 𝑒 ∈ V ↦ ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜑 } ) ) | |
| bropopvvv.p | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| bropopvvv.oo | ⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ 𝜃 } ) | ||
| Assertion | bropopvvv | ⊢ ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bropopvvv.o | ⊢ 𝑂 = ( 𝑣 ∈ V , 𝑒 ∈ V ↦ ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜑 } ) ) | |
| 2 | bropopvvv.p | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | bropopvvv.oo | ⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ 𝜃 } ) | |
| 4 | brovpreldm | ⊢ ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) ) | |
| 5 | simpl | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → 𝑣 = 𝑉 ) | |
| 6 | 2 | opabbidv | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → { 〈 𝑓 , 𝑝 〉 ∣ 𝜑 } = { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) |
| 7 | 5 5 6 | mpoeq123dv | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝑎 ∈ 𝑣 , 𝑏 ∈ 𝑣 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜑 } ) = ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ) |
| 8 | 7 1 | ovmpoga | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 𝑉 𝑂 𝐸 ) = ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ) |
| 9 | 8 | dmeqd | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → dom ( 𝑉 𝑂 𝐸 ) = dom ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ) |
| 10 | 9 | eleq2d | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ) ) |
| 11 | dmoprabss | ⊢ dom { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 = { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) } ⊆ ( 𝑉 × 𝑉 ) | |
| 12 | 11 | sseli | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 = { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) } → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑉 × 𝑉 ) ) |
| 13 | opelxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑉 × 𝑉 ) ↔ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) | |
| 14 | df-br | ⊢ ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ) | |
| 15 | ne0i | ⊢ ( 〈 𝐹 , 𝑃 〉 ∈ ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ ) | |
| 16 | 3 | breqd | ⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 ↔ 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ 𝜃 } 𝑃 ) ) |
| 17 | brabv | ⊢ ( 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ 𝜃 } 𝑃 → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) | |
| 18 | 17 | anim2i | ⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ 𝜃 } 𝑃 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
| 19 | 18 | ex | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ 𝜃 } 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐹 { 〈 𝑓 , 𝑝 〉 ∣ 𝜃 } 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
| 21 | 16 20 | sylbid | ⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
| 22 | 21 | ex | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) |
| 23 | 22 | com23 | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) |
| 24 | 23 | a1d | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) ) |
| 25 | 1 | mpondm0 | ⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝑉 𝑂 𝐸 ) = ∅ ) |
| 26 | df-ov | ⊢ ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = ( ( 𝑉 𝑂 𝐸 ) ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 27 | fveq1 | ⊢ ( ( 𝑉 𝑂 𝐸 ) = ∅ → ( ( 𝑉 𝑂 𝐸 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( ∅ ‘ 〈 𝐴 , 𝐵 〉 ) ) | |
| 28 | 26 27 | eqtrid | ⊢ ( ( 𝑉 𝑂 𝐸 ) = ∅ → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = ( ∅ ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 29 | 0fv | ⊢ ( ∅ ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ | |
| 30 | 28 29 | eqtrdi | ⊢ ( ( 𝑉 𝑂 𝐸 ) = ∅ → ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = ∅ ) |
| 31 | eqneqall | ⊢ ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) = ∅ → ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) ) | |
| 32 | 25 30 31 | 3syl | ⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) ) |
| 33 | 24 32 | pm2.61i | ⊢ ( ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) ≠ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) |
| 34 | 15 33 | syl | ⊢ ( 〈 𝐹 , 𝑃 〉 ∈ ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) |
| 35 | 14 34 | sylbi | ⊢ ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) ) |
| 36 | 35 | pm2.43i | ⊢ ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
| 37 | 36 | com12 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
| 38 | 37 | anc2ri | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
| 39 | df-3an | ⊢ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ↔ ( ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) | |
| 40 | 38 39 | imbitrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
| 41 | 13 40 | sylbi | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑉 × 𝑉 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
| 42 | 12 41 | syl | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 = { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) } → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
| 43 | df-mpo | ⊢ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) = { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 = { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) } | |
| 44 | 43 | dmeqi | ⊢ dom ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) = dom { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑐 = { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) } |
| 45 | 42 44 | eleq2s | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
| 46 | 10 45 | biimtrdi | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
| 47 | 3ianor | ⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) ↔ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ∨ ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) ) | |
| 48 | df-3or | ⊢ ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ∨ ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) ↔ ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) ∨ ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) ) | |
| 49 | ianor | ⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ↔ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) ) | |
| 50 | 25 | dmeqd | ⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → dom ( 𝑉 𝑂 𝐸 ) = dom ∅ ) |
| 51 | 50 | eleq2d | ⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ dom ∅ ) ) |
| 52 | dm0 | ⊢ dom ∅ = ∅ | |
| 53 | 52 | eleq2i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom ∅ ↔ 〈 𝐴 , 𝐵 〉 ∈ ∅ ) |
| 54 | 51 53 | bitrdi | ⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ∅ ) ) |
| 55 | noel | ⊢ ¬ 〈 𝐴 , 𝐵 〉 ∈ ∅ | |
| 56 | 55 | pm2.21i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ∅ → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
| 57 | 54 56 | biimtrdi | ⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
| 58 | 49 57 | sylbir | ⊢ ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
| 59 | anor | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ↔ ¬ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) ) | |
| 60 | id | ⊢ ( 𝑉 ∈ V → 𝑉 ∈ V ) | |
| 61 | 60 | ancri | ⊢ ( 𝑉 ∈ V → ( 𝑉 ∈ V ∧ 𝑉 ∈ V ) ) |
| 62 | 61 | adantr | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝑉 ∈ V ∧ 𝑉 ∈ V ) ) |
| 63 | mpoexga | ⊢ ( ( 𝑉 ∈ V ∧ 𝑉 ∈ V ) → ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) | |
| 64 | 62 63 | syl | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) |
| 65 | 64 | pm2.24d | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) ) |
| 66 | 59 65 | sylbir | ⊢ ( ¬ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) → ( ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) ) |
| 67 | 66 | imp | ⊢ ( ( ¬ ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) ∧ ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
| 68 | 58 67 | jaoi3 | ⊢ ( ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ) ∨ ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
| 69 | 48 68 | sylbi | ⊢ ( ( ¬ 𝑉 ∈ V ∨ ¬ 𝐸 ∈ V ∨ ¬ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
| 70 | 47 69 | sylbi | ⊢ ( ¬ ( 𝑉 ∈ V ∧ 𝐸 ∈ V ∧ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 〈 𝑓 , 𝑝 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) ) |
| 71 | 46 70 | pm2.61i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑉 𝑂 𝐸 ) → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
| 72 | 4 71 | syl | ⊢ ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) ) |
| 73 | 72 | pm2.43i | ⊢ ( 𝐹 ( 𝐴 ( 𝑉 𝑂 𝐸 ) 𝐵 ) 𝑃 → ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) |