This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjunction in terms of disjunction (De Morgan's law). Theorem *4.5 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 3-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | anor | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ¬ ¬ ( 𝜑 ∧ 𝜓 ) ) | |
| 2 | ianor | ⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) | |
| 3 | 1 2 | xchbinx | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |