This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation given by a maps-to rule is the empty set if the arguments are not contained in the base sets of the rule. (Contributed by Alexander van der Vekens, 12-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpondm0.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) | |
| Assertion | mpondm0 | ⊢ ( ¬ ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝑉 𝐹 𝑊 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpondm0.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) | |
| 2 | df-mpo | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑧 = 𝐶 ) } | |
| 3 | 1 2 | eqtri | ⊢ 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑧 = 𝐶 ) } |
| 4 | 3 | dmeqi | ⊢ dom 𝐹 = dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑧 = 𝐶 ) } |
| 5 | dmoprabss | ⊢ dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑧 = 𝐶 ) } ⊆ ( 𝑋 × 𝑌 ) | |
| 6 | 4 5 | eqsstri | ⊢ dom 𝐹 ⊆ ( 𝑋 × 𝑌 ) |
| 7 | nssdmovg | ⊢ ( ( dom 𝐹 ⊆ ( 𝑋 × 𝑌 ) ∧ ¬ ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ) → ( 𝑉 𝐹 𝑊 ) = ∅ ) | |
| 8 | 6 7 | mpan | ⊢ ( ¬ ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝑉 𝐹 𝑊 ) = ∅ ) |