This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for bropfvvvv . (Contributed by AV, 31-Dec-2020) (Revised by AV, 16-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bropfvvvv.o | ⊢ 𝑂 = ( 𝑎 ∈ 𝑈 ↦ ( 𝑏 ∈ 𝑉 , 𝑐 ∈ 𝑊 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜑 } ) ) | |
| bropfvvvv.oo | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } ) | ||
| Assertion | bropfvvvvlem | ⊢ ( ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑇 ) ∧ 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bropfvvvv.o | ⊢ 𝑂 = ( 𝑎 ∈ 𝑈 ↦ ( 𝑏 ∈ 𝑉 , 𝑐 ∈ 𝑊 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜑 } ) ) | |
| 2 | bropfvvvv.oo | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } ) | |
| 3 | opelxp | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑇 ) ↔ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) | |
| 4 | brne0 | ⊢ ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) ≠ ∅ ) | |
| 5 | 2 | 3expb | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) → ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } ) |
| 6 | 5 | breqd | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 ↔ 𝐷 { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } 𝐸 ) ) |
| 7 | brabv | ⊢ ( 𝐷 { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } 𝐸 → ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) | |
| 8 | 7 | anim2i | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐷 { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } 𝐸 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) |
| 9 | 8 | ex | ⊢ ( 𝐴 ∈ 𝑈 → ( 𝐷 { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) → ( 𝐷 { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 11 | 6 10 | sylbid | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 12 | 11 | ex | ⊢ ( 𝐴 ∈ 𝑈 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) |
| 13 | 12 | com23 | ⊢ ( 𝐴 ∈ 𝑈 → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) |
| 14 | 13 | a1d | ⊢ ( 𝐴 ∈ 𝑈 → ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) ≠ ∅ → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) |
| 15 | 1 | fvmptndm | ⊢ ( ¬ 𝐴 ∈ 𝑈 → ( 𝑂 ‘ 𝐴 ) = ∅ ) |
| 16 | df-ov | ⊢ ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = ( ( 𝑂 ‘ 𝐴 ) ‘ 〈 𝐵 , 𝐶 〉 ) | |
| 17 | fveq1 | ⊢ ( ( 𝑂 ‘ 𝐴 ) = ∅ → ( ( 𝑂 ‘ 𝐴 ) ‘ 〈 𝐵 , 𝐶 〉 ) = ( ∅ ‘ 〈 𝐵 , 𝐶 〉 ) ) | |
| 18 | 16 17 | eqtrid | ⊢ ( ( 𝑂 ‘ 𝐴 ) = ∅ → ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = ( ∅ ‘ 〈 𝐵 , 𝐶 〉 ) ) |
| 19 | 0fv | ⊢ ( ∅ ‘ 〈 𝐵 , 𝐶 〉 ) = ∅ | |
| 20 | 18 19 | eqtrdi | ⊢ ( ( 𝑂 ‘ 𝐴 ) = ∅ → ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = ∅ ) |
| 21 | eqneqall | ⊢ ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = ∅ → ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) ≠ ∅ → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) | |
| 22 | 15 20 21 | 3syl | ⊢ ( ¬ 𝐴 ∈ 𝑈 → ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) ≠ ∅ → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) |
| 23 | 14 22 | pm2.61i | ⊢ ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) ≠ ∅ → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) |
| 24 | 4 23 | mpcom | ⊢ ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 25 | 24 | com12 | ⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 26 | 25 | anc2ri | ⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) ) ) |
| 27 | 3anan32 | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ↔ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) ) | |
| 28 | 26 27 | imbitrrdi | ⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 29 | 3 28 | sylbi | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑇 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 30 | 29 | imp | ⊢ ( ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑇 ) ∧ 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) |