This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmoprabss | ⊢ dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } ⊆ ( 𝐴 × 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmoprab | ⊢ dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } | |
| 2 | 19.42v | ⊢ ( ∃ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑧 𝜑 ) ) | |
| 3 | 2 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑧 𝜑 ) } |
| 4 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑧 𝜑 ) } ⊆ ( 𝐴 × 𝐵 ) | |
| 5 | 3 4 | eqsstri | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } ⊆ ( 𝐴 × 𝐵 ) |
| 6 | 1 5 | eqsstri | ⊢ dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) } ⊆ ( 𝐴 × 𝐵 ) |