This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bernoulli's inequality, due to Johan Bernoulli (1667-1748). (Contributed by NM, 21-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bernneq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑁 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑗 = 0 → ( 𝐴 · 𝑗 ) = ( 𝐴 · 0 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝑗 = 0 → ( 1 + ( 𝐴 · 𝑗 ) ) = ( 1 + ( 𝐴 · 0 ) ) ) |
| 3 | oveq2 | ⊢ ( 𝑗 = 0 → ( ( 1 + 𝐴 ) ↑ 𝑗 ) = ( ( 1 + 𝐴 ) ↑ 0 ) ) | |
| 4 | 2 3 | breq12d | ⊢ ( 𝑗 = 0 → ( ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ↔ ( 1 + ( 𝐴 · 0 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 0 ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑗 = 0 → ( ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 0 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 0 ) ) ) ) |
| 6 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐴 · 𝑗 ) = ( 𝐴 · 𝑘 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 1 + ( 𝐴 · 𝑗 ) ) = ( 1 + ( 𝐴 · 𝑘 ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( ( 1 + 𝐴 ) ↑ 𝑗 ) = ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) | |
| 9 | 7 8 | breq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ↔ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 · 𝑗 ) = ( 𝐴 · ( 𝑘 + 1 ) ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 1 + ( 𝐴 · 𝑗 ) ) = ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 1 + 𝐴 ) ↑ 𝑗 ) = ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) | |
| 14 | 12 13 | breq12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ↔ ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( 𝐴 · 𝑗 ) = ( 𝐴 · 𝑁 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑗 = 𝑁 → ( 1 + ( 𝐴 · 𝑗 ) ) = ( 1 + ( 𝐴 · 𝑁 ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( ( 1 + 𝐴 ) ↑ 𝑗 ) = ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) | |
| 19 | 17 18 | breq12d | ⊢ ( 𝑗 = 𝑁 → ( ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ↔ ( 1 + ( 𝐴 · 𝑁 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑗 = 𝑁 → ( ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑗 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑗 ) ) ↔ ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑁 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) ) ) |
| 21 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 22 | mul01 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) | |
| 23 | 22 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( 1 + ( 𝐴 · 0 ) ) = ( 1 + 0 ) ) |
| 24 | 1p0e1 | ⊢ ( 1 + 0 ) = 1 | |
| 25 | 23 24 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( 1 + ( 𝐴 · 0 ) ) = 1 ) |
| 26 | 1le1 | ⊢ 1 ≤ 1 | |
| 27 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 28 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 + 𝐴 ) ∈ ℂ ) | |
| 29 | 27 28 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( 1 + 𝐴 ) ∈ ℂ ) |
| 30 | exp0 | ⊢ ( ( 1 + 𝐴 ) ∈ ℂ → ( ( 1 + 𝐴 ) ↑ 0 ) = 1 ) | |
| 31 | 29 30 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 𝐴 ) ↑ 0 ) = 1 ) |
| 32 | 26 31 | breqtrrid | ⊢ ( 𝐴 ∈ ℂ → 1 ≤ ( ( 1 + 𝐴 ) ↑ 0 ) ) |
| 33 | 25 32 | eqbrtrd | ⊢ ( 𝐴 ∈ ℂ → ( 1 + ( 𝐴 · 0 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 0 ) ) |
| 34 | 21 33 | syl | ⊢ ( 𝐴 ∈ ℝ → ( 1 + ( 𝐴 · 0 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 0 ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 0 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 0 ) ) |
| 36 | 1re | ⊢ 1 ∈ ℝ | |
| 37 | nn0re | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) | |
| 38 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝐴 · 𝑘 ) ∈ ℝ ) | |
| 39 | 37 38 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 · 𝑘 ) ∈ ℝ ) |
| 40 | readdcl | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝐴 · 𝑘 ) ∈ ℝ ) → ( 1 + ( 𝐴 · 𝑘 ) ) ∈ ℝ ) | |
| 41 | 36 39 40 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 1 + ( 𝐴 · 𝑘 ) ) ∈ ℝ ) |
| 42 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) | |
| 43 | readdcl | ⊢ ( ( ( 1 + ( 𝐴 · 𝑘 ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ∈ ℝ ) | |
| 44 | 41 42 43 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ∈ ℝ ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ∈ ℝ ) |
| 46 | readdcl | ⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 1 + 𝐴 ) ∈ ℝ ) | |
| 47 | 36 46 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 1 + 𝐴 ) ∈ ℝ ) |
| 48 | 47 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 1 + 𝐴 ) ∈ ℝ ) |
| 49 | 41 48 | remulcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ∈ ℝ ) |
| 50 | 49 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ∈ ℝ ) |
| 51 | reexpcl | ⊢ ( ( ( 1 + 𝐴 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) | |
| 52 | 47 51 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 53 | 52 48 | remulcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ∈ ℝ ) |
| 54 | 53 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ∈ ℝ ) |
| 55 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 · 𝐴 ) ∈ ℝ ) | |
| 56 | 55 | anidms | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 𝐴 ) ∈ ℝ ) |
| 57 | msqge0 | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 · 𝐴 ) ) | |
| 58 | 56 57 | jca | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 · 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐴 ) ) ) |
| 59 | nn0ge0 | ⊢ ( 𝑘 ∈ ℕ0 → 0 ≤ 𝑘 ) | |
| 60 | 37 59 | jca | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 ∈ ℝ ∧ 0 ≤ 𝑘 ) ) |
| 61 | mulge0 | ⊢ ( ( ( ( 𝐴 · 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · 𝐴 ) ) ∧ ( 𝑘 ∈ ℝ ∧ 0 ≤ 𝑘 ) ) → 0 ≤ ( ( 𝐴 · 𝐴 ) · 𝑘 ) ) | |
| 62 | 58 60 61 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( ( 𝐴 · 𝐴 ) · 𝑘 ) ) |
| 63 | 21 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 64 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 65 | 64 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 66 | 63 63 65 | mul32d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 · 𝐴 ) · 𝑘 ) = ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) |
| 67 | 62 66 | breqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) |
| 68 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 69 | 38 68 | remulcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 𝐴 · 𝑘 ) · 𝐴 ) ∈ ℝ ) |
| 70 | 37 69 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 · 𝑘 ) · 𝐴 ) ∈ ℝ ) |
| 71 | 44 70 | addge01d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 0 ≤ ( ( 𝐴 · 𝑘 ) · 𝐴 ) ↔ ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ≤ ( ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) ) ) |
| 72 | 67 71 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ≤ ( ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) ) |
| 73 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · 𝑘 ) ∈ ℂ ) | |
| 74 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 · 𝑘 ) ∈ ℂ ) → ( 1 + ( 𝐴 · 𝑘 ) ) ∈ ℂ ) | |
| 75 | 27 73 74 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 1 + ( 𝐴 · 𝑘 ) ) ∈ ℂ ) |
| 76 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 77 | 73 76 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝐴 · 𝑘 ) · 𝐴 ) ∈ ℂ ) |
| 78 | 75 76 77 | addassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) + ( 𝐴 + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) ) ) |
| 79 | muladd11 | ⊢ ( ( ( 𝐴 · 𝑘 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) + ( 𝐴 + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) ) ) | |
| 80 | 73 76 79 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) + ( 𝐴 + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) ) ) |
| 81 | 78 80 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ) |
| 82 | 21 64 81 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) + ( ( 𝐴 · 𝑘 ) · 𝐴 ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ) |
| 83 | 72 82 | breqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ≤ ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ) |
| 84 | 83 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ≤ ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ) |
| 85 | 41 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( 1 + ( 𝐴 · 𝑘 ) ) ∈ ℝ ) |
| 86 | 52 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 87 | 48 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( 1 + 𝐴 ) ∈ ℝ ) |
| 88 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 89 | leadd2 | ⊢ ( ( - 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 ≤ 𝐴 ↔ ( 1 + - 1 ) ≤ ( 1 + 𝐴 ) ) ) | |
| 90 | 88 36 89 | mp3an13 | ⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ 𝐴 ↔ ( 1 + - 1 ) ≤ ( 1 + 𝐴 ) ) ) |
| 91 | 1pneg1e0 | ⊢ ( 1 + - 1 ) = 0 | |
| 92 | 91 | breq1i | ⊢ ( ( 1 + - 1 ) ≤ ( 1 + 𝐴 ) ↔ 0 ≤ ( 1 + 𝐴 ) ) |
| 93 | 90 92 | bitrdi | ⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ 𝐴 ↔ 0 ≤ ( 1 + 𝐴 ) ) ) |
| 94 | 93 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → 0 ≤ ( 1 + 𝐴 ) ) |
| 95 | 94 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → 0 ≤ ( 1 + 𝐴 ) ) |
| 96 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) | |
| 97 | 85 86 87 95 96 | lemul1ad | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) · ( 1 + 𝐴 ) ) ≤ ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ) |
| 98 | 45 50 54 84 97 | letrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ≤ ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ) |
| 99 | adddi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + ( 𝐴 · 1 ) ) ) | |
| 100 | 27 99 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + ( 𝐴 · 1 ) ) ) |
| 101 | mulrid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) | |
| 102 | 101 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 103 | 102 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝐴 · 𝑘 ) + ( 𝐴 · 1 ) ) = ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) |
| 104 | 100 103 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) |
| 105 | 104 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( 1 + ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) ) |
| 106 | addass | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 · 𝑘 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) = ( 1 + ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) ) | |
| 107 | 27 73 76 106 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) = ( 1 + ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) ) |
| 108 | 105 107 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ) |
| 109 | 21 64 108 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ) |
| 110 | 109 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( 1 + ( 𝐴 · 𝑘 ) ) + 𝐴 ) ) |
| 111 | 27 21 28 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( 1 + 𝐴 ) ∈ ℂ ) |
| 112 | expp1 | ⊢ ( ( ( 1 + 𝐴 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ) | |
| 113 | 111 112 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ) |
| 114 | 113 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 1 + 𝐴 ) ↑ 𝑘 ) · ( 1 + 𝐴 ) ) ) |
| 115 | 98 110 114 | 3brtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( - 1 ≤ 𝐴 ∧ ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) |
| 116 | 115 | exp43 | ⊢ ( 𝐴 ∈ ℝ → ( 𝑘 ∈ ℕ0 → ( - 1 ≤ 𝐴 → ( ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 117 | 116 | com12 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐴 ∈ ℝ → ( - 1 ≤ 𝐴 → ( ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 118 | 117 | impd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 119 | 118 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑘 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑘 ) ) → ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · ( 𝑘 + 1 ) ) ) ≤ ( ( 1 + 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 120 | 5 10 15 20 35 119 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐴 ∈ ℝ ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑁 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) ) |
| 121 | 120 | expd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ ℝ → ( - 1 ≤ 𝐴 → ( 1 + ( 𝐴 · 𝑁 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) ) ) |
| 122 | 121 | 3imp21 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ - 1 ≤ 𝐴 ) → ( 1 + ( 𝐴 · 𝑁 ) ) ≤ ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) |