This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bernoulli's inequality, due to Johan Bernoulli (1667-1748). (Contributed by NM, 21-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bernneq | |- ( ( A e. RR /\ N e. NN0 /\ -u 1 <_ A ) -> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( j = 0 -> ( A x. j ) = ( A x. 0 ) ) |
|
| 2 | 1 | oveq2d | |- ( j = 0 -> ( 1 + ( A x. j ) ) = ( 1 + ( A x. 0 ) ) ) |
| 3 | oveq2 | |- ( j = 0 -> ( ( 1 + A ) ^ j ) = ( ( 1 + A ) ^ 0 ) ) |
|
| 4 | 2 3 | breq12d | |- ( j = 0 -> ( ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) <-> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) ) |
| 5 | 4 | imbi2d | |- ( j = 0 -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) ) <-> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) ) ) |
| 6 | oveq2 | |- ( j = k -> ( A x. j ) = ( A x. k ) ) |
|
| 7 | 6 | oveq2d | |- ( j = k -> ( 1 + ( A x. j ) ) = ( 1 + ( A x. k ) ) ) |
| 8 | oveq2 | |- ( j = k -> ( ( 1 + A ) ^ j ) = ( ( 1 + A ) ^ k ) ) |
|
| 9 | 7 8 | breq12d | |- ( j = k -> ( ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) <-> ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) |
| 10 | 9 | imbi2d | |- ( j = k -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) ) <-> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) ) |
| 11 | oveq2 | |- ( j = ( k + 1 ) -> ( A x. j ) = ( A x. ( k + 1 ) ) ) |
|
| 12 | 11 | oveq2d | |- ( j = ( k + 1 ) -> ( 1 + ( A x. j ) ) = ( 1 + ( A x. ( k + 1 ) ) ) ) |
| 13 | oveq2 | |- ( j = ( k + 1 ) -> ( ( 1 + A ) ^ j ) = ( ( 1 + A ) ^ ( k + 1 ) ) ) |
|
| 14 | 12 13 | breq12d | |- ( j = ( k + 1 ) -> ( ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) <-> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) |
| 15 | 14 | imbi2d | |- ( j = ( k + 1 ) -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) ) <-> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) |
| 16 | oveq2 | |- ( j = N -> ( A x. j ) = ( A x. N ) ) |
|
| 17 | 16 | oveq2d | |- ( j = N -> ( 1 + ( A x. j ) ) = ( 1 + ( A x. N ) ) ) |
| 18 | oveq2 | |- ( j = N -> ( ( 1 + A ) ^ j ) = ( ( 1 + A ) ^ N ) ) |
|
| 19 | 17 18 | breq12d | |- ( j = N -> ( ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) <-> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) ) |
| 20 | 19 | imbi2d | |- ( j = N -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. j ) ) <_ ( ( 1 + A ) ^ j ) ) <-> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) ) ) |
| 21 | recn | |- ( A e. RR -> A e. CC ) |
|
| 22 | mul01 | |- ( A e. CC -> ( A x. 0 ) = 0 ) |
|
| 23 | 22 | oveq2d | |- ( A e. CC -> ( 1 + ( A x. 0 ) ) = ( 1 + 0 ) ) |
| 24 | 1p0e1 | |- ( 1 + 0 ) = 1 |
|
| 25 | 23 24 | eqtrdi | |- ( A e. CC -> ( 1 + ( A x. 0 ) ) = 1 ) |
| 26 | 1le1 | |- 1 <_ 1 |
|
| 27 | ax-1cn | |- 1 e. CC |
|
| 28 | addcl | |- ( ( 1 e. CC /\ A e. CC ) -> ( 1 + A ) e. CC ) |
|
| 29 | 27 28 | mpan | |- ( A e. CC -> ( 1 + A ) e. CC ) |
| 30 | exp0 | |- ( ( 1 + A ) e. CC -> ( ( 1 + A ) ^ 0 ) = 1 ) |
|
| 31 | 29 30 | syl | |- ( A e. CC -> ( ( 1 + A ) ^ 0 ) = 1 ) |
| 32 | 26 31 | breqtrrid | |- ( A e. CC -> 1 <_ ( ( 1 + A ) ^ 0 ) ) |
| 33 | 25 32 | eqbrtrd | |- ( A e. CC -> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) |
| 34 | 21 33 | syl | |- ( A e. RR -> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) |
| 35 | 34 | adantr | |- ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. 0 ) ) <_ ( ( 1 + A ) ^ 0 ) ) |
| 36 | 1re | |- 1 e. RR |
|
| 37 | nn0re | |- ( k e. NN0 -> k e. RR ) |
|
| 38 | remulcl | |- ( ( A e. RR /\ k e. RR ) -> ( A x. k ) e. RR ) |
|
| 39 | 37 38 | sylan2 | |- ( ( A e. RR /\ k e. NN0 ) -> ( A x. k ) e. RR ) |
| 40 | readdcl | |- ( ( 1 e. RR /\ ( A x. k ) e. RR ) -> ( 1 + ( A x. k ) ) e. RR ) |
|
| 41 | 36 39 40 | sylancr | |- ( ( A e. RR /\ k e. NN0 ) -> ( 1 + ( A x. k ) ) e. RR ) |
| 42 | simpl | |- ( ( A e. RR /\ k e. NN0 ) -> A e. RR ) |
|
| 43 | readdcl | |- ( ( ( 1 + ( A x. k ) ) e. RR /\ A e. RR ) -> ( ( 1 + ( A x. k ) ) + A ) e. RR ) |
|
| 44 | 41 42 43 | syl2anc | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + ( A x. k ) ) + A ) e. RR ) |
| 45 | 44 | adantr | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) + A ) e. RR ) |
| 46 | readdcl | |- ( ( 1 e. RR /\ A e. RR ) -> ( 1 + A ) e. RR ) |
|
| 47 | 36 46 | mpan | |- ( A e. RR -> ( 1 + A ) e. RR ) |
| 48 | 47 | adantr | |- ( ( A e. RR /\ k e. NN0 ) -> ( 1 + A ) e. RR ) |
| 49 | 41 48 | remulcld | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) e. RR ) |
| 50 | 49 | adantr | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) e. RR ) |
| 51 | reexpcl | |- ( ( ( 1 + A ) e. RR /\ k e. NN0 ) -> ( ( 1 + A ) ^ k ) e. RR ) |
|
| 52 | 47 51 | sylan | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + A ) ^ k ) e. RR ) |
| 53 | 52 48 | remulcld | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) e. RR ) |
| 54 | 53 | adantr | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) e. RR ) |
| 55 | remulcl | |- ( ( A e. RR /\ A e. RR ) -> ( A x. A ) e. RR ) |
|
| 56 | 55 | anidms | |- ( A e. RR -> ( A x. A ) e. RR ) |
| 57 | msqge0 | |- ( A e. RR -> 0 <_ ( A x. A ) ) |
|
| 58 | 56 57 | jca | |- ( A e. RR -> ( ( A x. A ) e. RR /\ 0 <_ ( A x. A ) ) ) |
| 59 | nn0ge0 | |- ( k e. NN0 -> 0 <_ k ) |
|
| 60 | 37 59 | jca | |- ( k e. NN0 -> ( k e. RR /\ 0 <_ k ) ) |
| 61 | mulge0 | |- ( ( ( ( A x. A ) e. RR /\ 0 <_ ( A x. A ) ) /\ ( k e. RR /\ 0 <_ k ) ) -> 0 <_ ( ( A x. A ) x. k ) ) |
|
| 62 | 58 60 61 | syl2an | |- ( ( A e. RR /\ k e. NN0 ) -> 0 <_ ( ( A x. A ) x. k ) ) |
| 63 | 21 | adantr | |- ( ( A e. RR /\ k e. NN0 ) -> A e. CC ) |
| 64 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 65 | 64 | adantl | |- ( ( A e. RR /\ k e. NN0 ) -> k e. CC ) |
| 66 | 63 63 65 | mul32d | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( A x. A ) x. k ) = ( ( A x. k ) x. A ) ) |
| 67 | 62 66 | breqtrd | |- ( ( A e. RR /\ k e. NN0 ) -> 0 <_ ( ( A x. k ) x. A ) ) |
| 68 | simpl | |- ( ( A e. RR /\ k e. RR ) -> A e. RR ) |
|
| 69 | 38 68 | remulcld | |- ( ( A e. RR /\ k e. RR ) -> ( ( A x. k ) x. A ) e. RR ) |
| 70 | 37 69 | sylan2 | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( A x. k ) x. A ) e. RR ) |
| 71 | 44 70 | addge01d | |- ( ( A e. RR /\ k e. NN0 ) -> ( 0 <_ ( ( A x. k ) x. A ) <-> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) ) ) |
| 72 | 67 71 | mpbid | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) ) |
| 73 | mulcl | |- ( ( A e. CC /\ k e. CC ) -> ( A x. k ) e. CC ) |
|
| 74 | addcl | |- ( ( 1 e. CC /\ ( A x. k ) e. CC ) -> ( 1 + ( A x. k ) ) e. CC ) |
|
| 75 | 27 73 74 | sylancr | |- ( ( A e. CC /\ k e. CC ) -> ( 1 + ( A x. k ) ) e. CC ) |
| 76 | simpl | |- ( ( A e. CC /\ k e. CC ) -> A e. CC ) |
|
| 77 | 73 76 | mulcld | |- ( ( A e. CC /\ k e. CC ) -> ( ( A x. k ) x. A ) e. CC ) |
| 78 | 75 76 77 | addassd | |- ( ( A e. CC /\ k e. CC ) -> ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) = ( ( 1 + ( A x. k ) ) + ( A + ( ( A x. k ) x. A ) ) ) ) |
| 79 | muladd11 | |- ( ( ( A x. k ) e. CC /\ A e. CC ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) = ( ( 1 + ( A x. k ) ) + ( A + ( ( A x. k ) x. A ) ) ) ) |
|
| 80 | 73 76 79 | syl2anc | |- ( ( A e. CC /\ k e. CC ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) = ( ( 1 + ( A x. k ) ) + ( A + ( ( A x. k ) x. A ) ) ) ) |
| 81 | 78 80 | eqtr4d | |- ( ( A e. CC /\ k e. CC ) -> ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) = ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) ) |
| 82 | 21 64 81 | syl2an | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( ( 1 + ( A x. k ) ) + A ) + ( ( A x. k ) x. A ) ) = ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) ) |
| 83 | 72 82 | breqtrd | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) ) |
| 84 | 83 | adantr | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) ) |
| 85 | 41 | adantr | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + ( A x. k ) ) e. RR ) |
| 86 | 52 | adantr | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + A ) ^ k ) e. RR ) |
| 87 | 48 | adantr | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + A ) e. RR ) |
| 88 | neg1rr | |- -u 1 e. RR |
|
| 89 | leadd2 | |- ( ( -u 1 e. RR /\ A e. RR /\ 1 e. RR ) -> ( -u 1 <_ A <-> ( 1 + -u 1 ) <_ ( 1 + A ) ) ) |
|
| 90 | 88 36 89 | mp3an13 | |- ( A e. RR -> ( -u 1 <_ A <-> ( 1 + -u 1 ) <_ ( 1 + A ) ) ) |
| 91 | 1pneg1e0 | |- ( 1 + -u 1 ) = 0 |
|
| 92 | 91 | breq1i | |- ( ( 1 + -u 1 ) <_ ( 1 + A ) <-> 0 <_ ( 1 + A ) ) |
| 93 | 90 92 | bitrdi | |- ( A e. RR -> ( -u 1 <_ A <-> 0 <_ ( 1 + A ) ) ) |
| 94 | 93 | biimpa | |- ( ( A e. RR /\ -u 1 <_ A ) -> 0 <_ ( 1 + A ) ) |
| 95 | 94 | ad2ant2r | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> 0 <_ ( 1 + A ) ) |
| 96 | simprr | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) |
|
| 97 | 85 86 87 95 96 | lemul1ad | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) x. ( 1 + A ) ) <_ ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
| 98 | 45 50 54 84 97 | letrd | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + ( A x. k ) ) + A ) <_ ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
| 99 | adddi | |- ( ( A e. CC /\ k e. CC /\ 1 e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) |
|
| 100 | 27 99 | mp3an3 | |- ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + ( A x. 1 ) ) ) |
| 101 | mulrid | |- ( A e. CC -> ( A x. 1 ) = A ) |
|
| 102 | 101 | adantr | |- ( ( A e. CC /\ k e. CC ) -> ( A x. 1 ) = A ) |
| 103 | 102 | oveq2d | |- ( ( A e. CC /\ k e. CC ) -> ( ( A x. k ) + ( A x. 1 ) ) = ( ( A x. k ) + A ) ) |
| 104 | 100 103 | eqtrd | |- ( ( A e. CC /\ k e. CC ) -> ( A x. ( k + 1 ) ) = ( ( A x. k ) + A ) ) |
| 105 | 104 | oveq2d | |- ( ( A e. CC /\ k e. CC ) -> ( 1 + ( A x. ( k + 1 ) ) ) = ( 1 + ( ( A x. k ) + A ) ) ) |
| 106 | addass | |- ( ( 1 e. CC /\ ( A x. k ) e. CC /\ A e. CC ) -> ( ( 1 + ( A x. k ) ) + A ) = ( 1 + ( ( A x. k ) + A ) ) ) |
|
| 107 | 27 73 76 106 | mp3an2i | |- ( ( A e. CC /\ k e. CC ) -> ( ( 1 + ( A x. k ) ) + A ) = ( 1 + ( ( A x. k ) + A ) ) ) |
| 108 | 105 107 | eqtr4d | |- ( ( A e. CC /\ k e. CC ) -> ( 1 + ( A x. ( k + 1 ) ) ) = ( ( 1 + ( A x. k ) ) + A ) ) |
| 109 | 21 64 108 | syl2an | |- ( ( A e. RR /\ k e. NN0 ) -> ( 1 + ( A x. ( k + 1 ) ) ) = ( ( 1 + ( A x. k ) ) + A ) ) |
| 110 | 109 | adantr | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + ( A x. ( k + 1 ) ) ) = ( ( 1 + ( A x. k ) ) + A ) ) |
| 111 | 27 21 28 | sylancr | |- ( A e. RR -> ( 1 + A ) e. CC ) |
| 112 | expp1 | |- ( ( ( 1 + A ) e. CC /\ k e. NN0 ) -> ( ( 1 + A ) ^ ( k + 1 ) ) = ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
|
| 113 | 111 112 | sylan | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( 1 + A ) ^ ( k + 1 ) ) = ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
| 114 | 113 | adantr | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( ( 1 + A ) ^ ( k + 1 ) ) = ( ( ( 1 + A ) ^ k ) x. ( 1 + A ) ) ) |
| 115 | 98 110 114 | 3brtr4d | |- ( ( ( A e. RR /\ k e. NN0 ) /\ ( -u 1 <_ A /\ ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) |
| 116 | 115 | exp43 | |- ( A e. RR -> ( k e. NN0 -> ( -u 1 <_ A -> ( ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) ) |
| 117 | 116 | com12 | |- ( k e. NN0 -> ( A e. RR -> ( -u 1 <_ A -> ( ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) ) |
| 118 | 117 | impd | |- ( k e. NN0 -> ( ( A e. RR /\ -u 1 <_ A ) -> ( ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) |
| 119 | 118 | a2d | |- ( k e. NN0 -> ( ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. k ) ) <_ ( ( 1 + A ) ^ k ) ) -> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. ( k + 1 ) ) ) <_ ( ( 1 + A ) ^ ( k + 1 ) ) ) ) ) |
| 120 | 5 10 15 20 35 119 | nn0ind | |- ( N e. NN0 -> ( ( A e. RR /\ -u 1 <_ A ) -> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) ) |
| 121 | 120 | expd | |- ( N e. NN0 -> ( A e. RR -> ( -u 1 <_ A -> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) ) ) |
| 122 | 121 | 3imp21 | |- ( ( A e. RR /\ N e. NN0 /\ -u 1 <_ A ) -> ( 1 + ( A x. N ) ) <_ ( ( 1 + A ) ^ N ) ) |