This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muladd11 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · ( 1 + 𝐵 ) ) = ( ( 1 + 𝐴 ) + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 + 𝐴 ) ∈ ℂ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( 1 + 𝐴 ) ∈ ℂ ) |
| 4 | adddi | ⊢ ( ( ( 1 + 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · ( 1 + 𝐵 ) ) = ( ( ( 1 + 𝐴 ) · 1 ) + ( ( 1 + 𝐴 ) · 𝐵 ) ) ) | |
| 5 | 1 4 | mp3an2 | ⊢ ( ( ( 1 + 𝐴 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · ( 1 + 𝐵 ) ) = ( ( ( 1 + 𝐴 ) · 1 ) + ( ( 1 + 𝐴 ) · 𝐵 ) ) ) |
| 6 | 3 5 | sylan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · ( 1 + 𝐵 ) ) = ( ( ( 1 + 𝐴 ) · 1 ) + ( ( 1 + 𝐴 ) · 𝐵 ) ) ) |
| 7 | 3 | mulridd | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 𝐴 ) · 1 ) = ( 1 + 𝐴 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · 1 ) = ( 1 + 𝐴 ) ) |
| 9 | adddir | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · 𝐵 ) = ( ( 1 · 𝐵 ) + ( 𝐴 · 𝐵 ) ) ) | |
| 10 | 1 9 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · 𝐵 ) = ( ( 1 · 𝐵 ) + ( 𝐴 · 𝐵 ) ) ) |
| 11 | mullid | ⊢ ( 𝐵 ∈ ℂ → ( 1 · 𝐵 ) = 𝐵 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 · 𝐵 ) = 𝐵 ) |
| 13 | 12 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 · 𝐵 ) + ( 𝐴 · 𝐵 ) ) = ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) |
| 14 | 10 13 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · 𝐵 ) = ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) |
| 15 | 8 14 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 1 + 𝐴 ) · 1 ) + ( ( 1 + 𝐴 ) · 𝐵 ) ) = ( ( 1 + 𝐴 ) + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ) |
| 16 | 6 15 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · ( 1 + 𝐵 ) ) = ( ( 1 + 𝐴 ) + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ) |