This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A square is nonnegative. (Contributed by NM, 23-May-2007) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | msqge0 | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 | ⊢ ( ( 𝐴 = 0 ∧ 𝐴 = 0 ) → ( 𝐴 · 𝐴 ) = ( 0 · 0 ) ) | |
| 2 | 1 | anidms | ⊢ ( 𝐴 = 0 → ( 𝐴 · 𝐴 ) = ( 0 · 0 ) ) |
| 3 | 0cn | ⊢ 0 ∈ ℂ | |
| 4 | 3 | mul01i | ⊢ ( 0 · 0 ) = 0 |
| 5 | 2 4 | eqtrdi | ⊢ ( 𝐴 = 0 → ( 𝐴 · 𝐴 ) = 0 ) |
| 6 | 5 | breq2d | ⊢ ( 𝐴 = 0 → ( 0 ≤ ( 𝐴 · 𝐴 ) ↔ 0 ≤ 0 ) ) |
| 7 | 0red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 ∈ ℝ ) | |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) | |
| 9 | 8 8 | remulcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · 𝐴 ) ∈ ℝ ) |
| 10 | msqgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · 𝐴 ) ) | |
| 11 | 7 9 10 | ltled | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 ≤ ( 𝐴 · 𝐴 ) ) |
| 12 | 0re | ⊢ 0 ∈ ℝ | |
| 13 | leid | ⊢ ( 0 ∈ ℝ → 0 ≤ 0 ) | |
| 14 | 12 13 | mp1i | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ 0 ) |
| 15 | 6 11 14 | pm2.61ne | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 · 𝐴 ) ) |