This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of Beran p. 98. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bcs.1 | ⊢ 𝐴 ∈ ℋ | |
| bcs.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | bcsiALT | ⊢ ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcs.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | bcs.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | fveq2 | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) = ( abs ‘ 0 ) ) | |
| 4 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 5 | normge0 | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) | |
| 6 | 1 5 | ax-mp | ⊢ 0 ≤ ( normℎ ‘ 𝐴 ) |
| 7 | normge0 | ⊢ ( 𝐵 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐵 ) ) | |
| 8 | 2 7 | ax-mp | ⊢ 0 ≤ ( normℎ ‘ 𝐵 ) |
| 9 | 1 | normcli | ⊢ ( normℎ ‘ 𝐴 ) ∈ ℝ |
| 10 | 2 | normcli | ⊢ ( normℎ ‘ 𝐵 ) ∈ ℝ |
| 11 | 9 10 | mulge0i | ⊢ ( ( 0 ≤ ( normℎ ‘ 𝐴 ) ∧ 0 ≤ ( normℎ ‘ 𝐵 ) ) → 0 ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |
| 12 | 6 8 11 | mp2an | ⊢ 0 ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) |
| 13 | 4 12 | eqbrtri | ⊢ ( abs ‘ 0 ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) |
| 14 | 3 13 | eqbrtrdi | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |
| 15 | df-ne | ⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 ↔ ¬ ( 𝐴 ·ih 𝐵 ) = 0 ) | |
| 16 | 2 1 | his1i | ⊢ ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) |
| 17 | 16 | oveq2i | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
| 18 | 17 | oveq2i | ⊢ ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
| 19 | 1 2 | hicli | ⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 20 | abslem2 | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐵 ) ≠ 0 ) → ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) | |
| 21 | 19 20 | mpan | ⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 → ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
| 22 | 18 21 | eqtr2id | ⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 → ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( 𝐵 ·ih 𝐴 ) ) ) ) |
| 23 | 19 | abs00i | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) |
| 24 | 23 | necon3bii | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 ↔ ( 𝐴 ·ih 𝐵 ) ≠ 0 ) |
| 25 | 19 | abscli | ⊢ ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ∈ ℝ |
| 26 | 25 | recni | ⊢ ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ∈ ℂ |
| 27 | 19 26 | divclzi | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ ) |
| 28 | 19 26 | divreczi | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
| 29 | 28 | fveq2d | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) ) |
| 30 | 26 | recclzi | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ ) |
| 31 | absmul | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ ) → ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) = ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) · ( abs ‘ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) ) | |
| 32 | 19 30 31 | sylancr | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) = ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) · ( abs ‘ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) ) |
| 33 | 25 | rerecclzi | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ ) |
| 34 | 0re | ⊢ 0 ∈ ℝ | |
| 35 | 33 34 | jctil | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( 0 ∈ ℝ ∧ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ ) ) |
| 36 | 19 | absgt0i | ⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 ↔ 0 < ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
| 37 | 24 36 | bitri | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 ↔ 0 < ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
| 38 | 25 | recgt0i | ⊢ ( 0 < ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) → 0 < ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
| 39 | 37 38 | sylbi | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → 0 < ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
| 40 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ ) → ( 0 < ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) → 0 ≤ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) | |
| 41 | 35 39 40 | sylc | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → 0 ≤ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
| 42 | 33 41 | absidd | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( abs ‘ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
| 43 | 42 | oveq2d | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) · ( abs ‘ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) = ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
| 44 | 32 43 | eqtrd | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) = ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
| 45 | 26 | recidzi | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = 1 ) |
| 46 | 29 44 45 | 3eqtrd | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = 1 ) |
| 47 | 27 46 | jca | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = 1 ) ) |
| 48 | 24 47 | sylbir | ⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 → ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = 1 ) ) |
| 49 | 1 2 | normlem7tALT | ⊢ ( ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = 1 ) → ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( 𝐵 ·ih 𝐴 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
| 50 | 48 49 | syl | ⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 → ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( 𝐵 ·ih 𝐴 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
| 51 | 22 50 | eqbrtrd | ⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 → ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
| 52 | 15 51 | sylbir | ⊢ ( ¬ ( 𝐴 ·ih 𝐵 ) = 0 → ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
| 53 | 10 | recni | ⊢ ( normℎ ‘ 𝐵 ) ∈ ℂ |
| 54 | 9 | recni | ⊢ ( normℎ ‘ 𝐴 ) ∈ ℂ |
| 55 | normval | ⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) = ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) | |
| 56 | 2 55 | ax-mp | ⊢ ( normℎ ‘ 𝐵 ) = ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) |
| 57 | normval | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) | |
| 58 | 1 57 | ax-mp | ⊢ ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) |
| 59 | 56 58 | oveq12i | ⊢ ( ( normℎ ‘ 𝐵 ) · ( normℎ ‘ 𝐴 ) ) = ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
| 60 | 53 54 59 | mulcomli | ⊢ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) = ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
| 61 | 60 | breq2i | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ↔ ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
| 62 | 2pos | ⊢ 0 < 2 | |
| 63 | hiidge0 | ⊢ ( 𝐵 ∈ ℋ → 0 ≤ ( 𝐵 ·ih 𝐵 ) ) | |
| 64 | hiidrcl | ⊢ ( 𝐵 ∈ ℋ → ( 𝐵 ·ih 𝐵 ) ∈ ℝ ) | |
| 65 | 2 64 | ax-mp | ⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℝ |
| 66 | 65 | sqrtcli | ⊢ ( 0 ≤ ( 𝐵 ·ih 𝐵 ) → ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ∈ ℝ ) |
| 67 | 2 63 66 | mp2b | ⊢ ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ∈ ℝ |
| 68 | hiidge0 | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) | |
| 69 | hiidrcl | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) | |
| 70 | 1 69 | ax-mp | ⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℝ |
| 71 | 70 | sqrtcli | ⊢ ( 0 ≤ ( 𝐴 ·ih 𝐴 ) → ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℝ ) |
| 72 | 1 68 71 | mp2b | ⊢ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℝ |
| 73 | 67 72 | remulcli | ⊢ ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ∈ ℝ |
| 74 | 2re | ⊢ 2 ∈ ℝ | |
| 75 | 25 73 74 | lemul2i | ⊢ ( 0 < 2 → ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ↔ ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) ) |
| 76 | 62 75 | ax-mp | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ↔ ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
| 77 | 61 76 | bitri | ⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ↔ ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
| 78 | 52 77 | sylibr | ⊢ ( ¬ ( 𝐴 ·ih 𝐵 ) = 0 → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |
| 79 | 14 78 | pm2.61i | ⊢ ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) |