This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between division and reciprocal. Theorem I.9 of Apostol p. 18. (Contributed by NM, 11-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| divclz.2 | ⊢ 𝐵 ∈ ℂ | ||
| Assertion | divreczi | ⊢ ( 𝐵 ≠ 0 → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | divclz.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | divrec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) | |
| 4 | 1 2 3 | mp3an12 | ⊢ ( 𝐵 ≠ 0 → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |