This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem7t.1 | ⊢ 𝐴 ∈ ℋ | |
| normlem7t.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | normlem7tALT | ⊢ ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) → ( ( ( ∗ ‘ 𝑆 ) · ( 𝐴 ·ih 𝐵 ) ) + ( 𝑆 · ( 𝐵 ·ih 𝐴 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem7t.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | normlem7t.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | fveq2 | ⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ∗ ‘ 𝑆 ) = ( ∗ ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) ) | |
| 4 | 3 | oveq1d | ⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( ∗ ‘ 𝑆 ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( ∗ ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) · ( 𝐴 ·ih 𝐵 ) ) ) |
| 5 | oveq1 | ⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( 𝑆 · ( 𝐵 ·ih 𝐴 ) ) = ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) · ( 𝐵 ·ih 𝐴 ) ) ) | |
| 6 | 4 5 | oveq12d | ⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( ( ∗ ‘ 𝑆 ) · ( 𝐴 ·ih 𝐵 ) ) + ( 𝑆 · ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( ∗ ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) · ( 𝐵 ·ih 𝐴 ) ) ) ) |
| 7 | 6 | breq1d | ⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐴 ·ih 𝐵 ) ) + ( 𝑆 · ( 𝐵 ·ih 𝐴 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ↔ ( ( ( ∗ ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) · ( 𝐵 ·ih 𝐴 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) ) |
| 8 | eleq1 | ⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( 𝑆 ∈ ℂ ↔ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ∈ ℂ ) ) | |
| 9 | fveq2 | ⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( abs ‘ 𝑆 ) = ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( abs ‘ 𝑆 ) = 1 ↔ ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) = 1 ) ) |
| 11 | 8 10 | anbi12d | ⊢ ( 𝑆 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) ↔ ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ∈ ℂ ∧ ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) = 1 ) ) ) |
| 12 | eleq1 | ⊢ ( 1 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( 1 ∈ ℂ ↔ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ∈ ℂ ) ) | |
| 13 | fveq2 | ⊢ ( 1 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( abs ‘ 1 ) = ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 1 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( abs ‘ 1 ) = 1 ↔ ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) = 1 ) ) |
| 15 | 12 14 | anbi12d | ⊢ ( 1 = if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) → ( ( 1 ∈ ℂ ∧ ( abs ‘ 1 ) = 1 ) ↔ ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ∈ ℂ ∧ ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) = 1 ) ) ) |
| 16 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 17 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 18 | 16 17 | pm3.2i | ⊢ ( 1 ∈ ℂ ∧ ( abs ‘ 1 ) = 1 ) |
| 19 | 11 15 18 | elimhyp | ⊢ ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ∈ ℂ ∧ ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) = 1 ) |
| 20 | 19 | simpli | ⊢ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ∈ ℂ |
| 21 | 19 | simpri | ⊢ ( abs ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) = 1 |
| 22 | 20 1 2 21 | normlem7 | ⊢ ( ( ( ∗ ‘ if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( if ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) , 𝑆 , 1 ) · ( 𝐵 ·ih 𝐴 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
| 23 | 7 22 | dedth | ⊢ ( ( 𝑆 ∈ ℂ ∧ ( abs ‘ 𝑆 ) = 1 ) → ( ( ( ∗ ‘ 𝑆 ) · ( 𝐴 ·ih 𝐵 ) ) + ( 𝑆 · ( 𝐵 ·ih 𝐴 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |