This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjugate law for inner product. Postulate (S1) of Beran p. 95. (Contributed by NM, 15-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | his1.1 | ⊢ 𝐴 ∈ ℋ | |
| his1.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | his1i | ⊢ ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | his1.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | his1.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | ax-his1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) |