This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma involving absolute values. (Contributed by NM, 11-Oct-1999) (Revised by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abslem2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · 𝐴 ) + ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) ) = ( 2 · ( abs ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absvalsq | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 3 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 5 | 4 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 6 | 5 | sqvald | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) |
| 7 | 2 6 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) |
| 8 | 7 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / ( abs ‘ 𝐴 ) ) = ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 9 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 10 | 9 | cjcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 11 | abs00 | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) | |
| 12 | 11 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
| 13 | 12 | biimpar | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 14 | 9 10 5 13 | div23d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / ( abs ‘ 𝐴 ) ) = ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) ) |
| 15 | 5 5 13 | divcan3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) / ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 16 | 8 14 15 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) ) = ( ∗ ‘ ( abs ‘ 𝐴 ) ) ) |
| 18 | 9 5 13 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 19 | 18 10 | cjmuld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) |
| 20 | 9 | cjcjd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) |
| 21 | 20 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · 𝐴 ) ) |
| 22 | 19 21 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · 𝐴 ) ) |
| 23 | 4 | cjred | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 24 | 17 22 23 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 25 | 24 16 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · 𝐴 ) + ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) ) = ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐴 ) ) ) |
| 26 | 5 | 2timesd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 2 · ( abs ‘ 𝐴 ) ) = ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐴 ) ) ) |
| 27 | 25 26 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( ∗ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) · 𝐴 ) + ( ( 𝐴 / ( abs ‘ 𝐴 ) ) · ( ∗ ‘ 𝐴 ) ) ) = ( 2 · ( abs ‘ 𝐴 ) ) ) |