This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of Beran p. 98. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bcs.1 | |- A e. ~H |
|
| bcs.2 | |- B e. ~H |
||
| Assertion | bcsiALT | |- ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcs.1 | |- A e. ~H |
|
| 2 | bcs.2 | |- B e. ~H |
|
| 3 | fveq2 | |- ( ( A .ih B ) = 0 -> ( abs ` ( A .ih B ) ) = ( abs ` 0 ) ) |
|
| 4 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 5 | normge0 | |- ( A e. ~H -> 0 <_ ( normh ` A ) ) |
|
| 6 | 1 5 | ax-mp | |- 0 <_ ( normh ` A ) |
| 7 | normge0 | |- ( B e. ~H -> 0 <_ ( normh ` B ) ) |
|
| 8 | 2 7 | ax-mp | |- 0 <_ ( normh ` B ) |
| 9 | 1 | normcli | |- ( normh ` A ) e. RR |
| 10 | 2 | normcli | |- ( normh ` B ) e. RR |
| 11 | 9 10 | mulge0i | |- ( ( 0 <_ ( normh ` A ) /\ 0 <_ ( normh ` B ) ) -> 0 <_ ( ( normh ` A ) x. ( normh ` B ) ) ) |
| 12 | 6 8 11 | mp2an | |- 0 <_ ( ( normh ` A ) x. ( normh ` B ) ) |
| 13 | 4 12 | eqbrtri | |- ( abs ` 0 ) <_ ( ( normh ` A ) x. ( normh ` B ) ) |
| 14 | 3 13 | eqbrtrdi | |- ( ( A .ih B ) = 0 -> ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) ) |
| 15 | df-ne | |- ( ( A .ih B ) =/= 0 <-> -. ( A .ih B ) = 0 ) |
|
| 16 | 2 1 | his1i | |- ( B .ih A ) = ( * ` ( A .ih B ) ) |
| 17 | 16 | oveq2i | |- ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( B .ih A ) ) = ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( * ` ( A .ih B ) ) ) |
| 18 | 17 | oveq2i | |- ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( B .ih A ) ) ) = ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( * ` ( A .ih B ) ) ) ) |
| 19 | 1 2 | hicli | |- ( A .ih B ) e. CC |
| 20 | abslem2 | |- ( ( ( A .ih B ) e. CC /\ ( A .ih B ) =/= 0 ) -> ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( * ` ( A .ih B ) ) ) ) = ( 2 x. ( abs ` ( A .ih B ) ) ) ) |
|
| 21 | 19 20 | mpan | |- ( ( A .ih B ) =/= 0 -> ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( * ` ( A .ih B ) ) ) ) = ( 2 x. ( abs ` ( A .ih B ) ) ) ) |
| 22 | 18 21 | eqtr2id | |- ( ( A .ih B ) =/= 0 -> ( 2 x. ( abs ` ( A .ih B ) ) ) = ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( B .ih A ) ) ) ) |
| 23 | 19 | abs00i | |- ( ( abs ` ( A .ih B ) ) = 0 <-> ( A .ih B ) = 0 ) |
| 24 | 23 | necon3bii | |- ( ( abs ` ( A .ih B ) ) =/= 0 <-> ( A .ih B ) =/= 0 ) |
| 25 | 19 | abscli | |- ( abs ` ( A .ih B ) ) e. RR |
| 26 | 25 | recni | |- ( abs ` ( A .ih B ) ) e. CC |
| 27 | 19 26 | divclzi | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) e. CC ) |
| 28 | 19 26 | divreczi | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) = ( ( A .ih B ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) |
| 29 | 28 | fveq2d | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> ( abs ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) = ( abs ` ( ( A .ih B ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) ) |
| 30 | 26 | recclzi | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> ( 1 / ( abs ` ( A .ih B ) ) ) e. CC ) |
| 31 | absmul | |- ( ( ( A .ih B ) e. CC /\ ( 1 / ( abs ` ( A .ih B ) ) ) e. CC ) -> ( abs ` ( ( A .ih B ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) = ( ( abs ` ( A .ih B ) ) x. ( abs ` ( 1 / ( abs ` ( A .ih B ) ) ) ) ) ) |
|
| 32 | 19 30 31 | sylancr | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> ( abs ` ( ( A .ih B ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) = ( ( abs ` ( A .ih B ) ) x. ( abs ` ( 1 / ( abs ` ( A .ih B ) ) ) ) ) ) |
| 33 | 25 | rerecclzi | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> ( 1 / ( abs ` ( A .ih B ) ) ) e. RR ) |
| 34 | 0re | |- 0 e. RR |
|
| 35 | 33 34 | jctil | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> ( 0 e. RR /\ ( 1 / ( abs ` ( A .ih B ) ) ) e. RR ) ) |
| 36 | 19 | absgt0i | |- ( ( A .ih B ) =/= 0 <-> 0 < ( abs ` ( A .ih B ) ) ) |
| 37 | 24 36 | bitri | |- ( ( abs ` ( A .ih B ) ) =/= 0 <-> 0 < ( abs ` ( A .ih B ) ) ) |
| 38 | 25 | recgt0i | |- ( 0 < ( abs ` ( A .ih B ) ) -> 0 < ( 1 / ( abs ` ( A .ih B ) ) ) ) |
| 39 | 37 38 | sylbi | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> 0 < ( 1 / ( abs ` ( A .ih B ) ) ) ) |
| 40 | ltle | |- ( ( 0 e. RR /\ ( 1 / ( abs ` ( A .ih B ) ) ) e. RR ) -> ( 0 < ( 1 / ( abs ` ( A .ih B ) ) ) -> 0 <_ ( 1 / ( abs ` ( A .ih B ) ) ) ) ) |
|
| 41 | 35 39 40 | sylc | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> 0 <_ ( 1 / ( abs ` ( A .ih B ) ) ) ) |
| 42 | 33 41 | absidd | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> ( abs ` ( 1 / ( abs ` ( A .ih B ) ) ) ) = ( 1 / ( abs ` ( A .ih B ) ) ) ) |
| 43 | 42 | oveq2d | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> ( ( abs ` ( A .ih B ) ) x. ( abs ` ( 1 / ( abs ` ( A .ih B ) ) ) ) ) = ( ( abs ` ( A .ih B ) ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) |
| 44 | 32 43 | eqtrd | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> ( abs ` ( ( A .ih B ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) = ( ( abs ` ( A .ih B ) ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) |
| 45 | 26 | recidzi | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> ( ( abs ` ( A .ih B ) ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) = 1 ) |
| 46 | 29 44 45 | 3eqtrd | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> ( abs ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) = 1 ) |
| 47 | 27 46 | jca | |- ( ( abs ` ( A .ih B ) ) =/= 0 -> ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) e. CC /\ ( abs ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) = 1 ) ) |
| 48 | 24 47 | sylbir | |- ( ( A .ih B ) =/= 0 -> ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) e. CC /\ ( abs ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) = 1 ) ) |
| 49 | 1 2 | normlem7tALT | |- ( ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) e. CC /\ ( abs ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) = 1 ) -> ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( B .ih A ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) |
| 50 | 48 49 | syl | |- ( ( A .ih B ) =/= 0 -> ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( B .ih A ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) |
| 51 | 22 50 | eqbrtrd | |- ( ( A .ih B ) =/= 0 -> ( 2 x. ( abs ` ( A .ih B ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) |
| 52 | 15 51 | sylbir | |- ( -. ( A .ih B ) = 0 -> ( 2 x. ( abs ` ( A .ih B ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) |
| 53 | 10 | recni | |- ( normh ` B ) e. CC |
| 54 | 9 | recni | |- ( normh ` A ) e. CC |
| 55 | normval | |- ( B e. ~H -> ( normh ` B ) = ( sqrt ` ( B .ih B ) ) ) |
|
| 56 | 2 55 | ax-mp | |- ( normh ` B ) = ( sqrt ` ( B .ih B ) ) |
| 57 | normval | |- ( A e. ~H -> ( normh ` A ) = ( sqrt ` ( A .ih A ) ) ) |
|
| 58 | 1 57 | ax-mp | |- ( normh ` A ) = ( sqrt ` ( A .ih A ) ) |
| 59 | 56 58 | oveq12i | |- ( ( normh ` B ) x. ( normh ` A ) ) = ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) |
| 60 | 53 54 59 | mulcomli | |- ( ( normh ` A ) x. ( normh ` B ) ) = ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) |
| 61 | 60 | breq2i | |- ( ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) <-> ( abs ` ( A .ih B ) ) <_ ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) |
| 62 | 2pos | |- 0 < 2 |
|
| 63 | hiidge0 | |- ( B e. ~H -> 0 <_ ( B .ih B ) ) |
|
| 64 | hiidrcl | |- ( B e. ~H -> ( B .ih B ) e. RR ) |
|
| 65 | 2 64 | ax-mp | |- ( B .ih B ) e. RR |
| 66 | 65 | sqrtcli | |- ( 0 <_ ( B .ih B ) -> ( sqrt ` ( B .ih B ) ) e. RR ) |
| 67 | 2 63 66 | mp2b | |- ( sqrt ` ( B .ih B ) ) e. RR |
| 68 | hiidge0 | |- ( A e. ~H -> 0 <_ ( A .ih A ) ) |
|
| 69 | hiidrcl | |- ( A e. ~H -> ( A .ih A ) e. RR ) |
|
| 70 | 1 69 | ax-mp | |- ( A .ih A ) e. RR |
| 71 | 70 | sqrtcli | |- ( 0 <_ ( A .ih A ) -> ( sqrt ` ( A .ih A ) ) e. RR ) |
| 72 | 1 68 71 | mp2b | |- ( sqrt ` ( A .ih A ) ) e. RR |
| 73 | 67 72 | remulcli | |- ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) e. RR |
| 74 | 2re | |- 2 e. RR |
|
| 75 | 25 73 74 | lemul2i | |- ( 0 < 2 -> ( ( abs ` ( A .ih B ) ) <_ ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) <-> ( 2 x. ( abs ` ( A .ih B ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) ) |
| 76 | 62 75 | ax-mp | |- ( ( abs ` ( A .ih B ) ) <_ ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) <-> ( 2 x. ( abs ` ( A .ih B ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) |
| 77 | 61 76 | bitri | |- ( ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) <-> ( 2 x. ( abs ` ( A .ih B ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) |
| 78 | 52 77 | sylibr | |- ( -. ( A .ih B ) = 0 -> ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) ) |
| 79 | 14 78 | pm2.61i | |- ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) |