This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr be used later. Instead, use adddi . (Contributed by NM, 2-Sep-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axdistr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs | ⊢ ℂ = ( ( R × R ) / ◡ E ) | |
| 2 | addcnsrec | ⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ◡ E + [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( 𝑧 +R 𝑣 ) , ( 𝑤 +R 𝑢 ) 〉 ] ◡ E ) | |
| 3 | mulcnsrec | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 ( 𝑧 +R 𝑣 ) , ( 𝑤 +R 𝑢 ) 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R ( 𝑧 +R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) ) , ( ( 𝑦 ·R ( 𝑧 +R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 +R 𝑢 ) ) ) 〉 ] ◡ E ) | |
| 4 | mulcnsrec | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 𝑧 , 𝑤 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E ) | |
| 5 | mulcnsrec | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) , ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) 〉 ] ◡ E ) | |
| 6 | addcnsrec | ⊢ ( ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) ∧ ( ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) ) → ( [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E + [ 〈 ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) , ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) 〉 ] ◡ E ) = [ 〈 ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) +R ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) , ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) +R ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ) 〉 ] ◡ E ) | |
| 7 | addclsr | ⊢ ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑧 +R 𝑣 ) ∈ R ) | |
| 8 | addclsr | ⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑤 +R 𝑢 ) ∈ R ) | |
| 9 | 7 8 | anim12i | ⊢ ( ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) |
| 10 | 9 | an4s | ⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) |
| 11 | mulclsr | ⊢ ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑥 ·R 𝑧 ) ∈ R ) | |
| 12 | m1r | ⊢ -1R ∈ R | |
| 13 | mulclsr | ⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑦 ·R 𝑤 ) ∈ R ) | |
| 14 | mulclsr | ⊢ ( ( -1R ∈ R ∧ ( 𝑦 ·R 𝑤 ) ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) |
| 16 | addclsr | ⊢ ( ( ( 𝑥 ·R 𝑧 ) ∈ R ∧ ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) | |
| 17 | 11 15 16 | syl2an | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
| 18 | 17 | an4s | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
| 19 | mulclsr | ⊢ ( ( 𝑦 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑦 ·R 𝑧 ) ∈ R ) | |
| 20 | mulclsr | ⊢ ( ( 𝑥 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑥 ·R 𝑤 ) ∈ R ) | |
| 21 | addclsr | ⊢ ( ( ( 𝑦 ·R 𝑧 ) ∈ R ∧ ( 𝑥 ·R 𝑤 ) ∈ R ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) | |
| 22 | 19 20 21 | syl2anr | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑧 ∈ R ) ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
| 23 | 22 | an42s | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
| 24 | 18 23 | jca | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) ) |
| 25 | mulclsr | ⊢ ( ( 𝑥 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑥 ·R 𝑣 ) ∈ R ) | |
| 26 | mulclsr | ⊢ ( ( 𝑦 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑦 ·R 𝑢 ) ∈ R ) | |
| 27 | mulclsr | ⊢ ( ( -1R ∈ R ∧ ( 𝑦 ·R 𝑢 ) ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ∈ R ) | |
| 28 | 12 26 27 | sylancr | ⊢ ( ( 𝑦 ∈ R ∧ 𝑢 ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ∈ R ) |
| 29 | addclsr | ⊢ ( ( ( 𝑥 ·R 𝑣 ) ∈ R ∧ ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ∈ R ) → ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ) | |
| 30 | 25 28 29 | syl2an | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑣 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ) |
| 31 | 30 | an4s | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ) |
| 32 | mulclsr | ⊢ ( ( 𝑦 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑦 ·R 𝑣 ) ∈ R ) | |
| 33 | mulclsr | ⊢ ( ( 𝑥 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑥 ·R 𝑢 ) ∈ R ) | |
| 34 | addclsr | ⊢ ( ( ( 𝑦 ·R 𝑣 ) ∈ R ∧ ( 𝑥 ·R 𝑢 ) ∈ R ) → ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) | |
| 35 | 32 33 34 | syl2anr | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑢 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑣 ∈ R ) ) → ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) |
| 36 | 35 | an42s | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) |
| 37 | 31 36 | jca | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) ) |
| 38 | distrsr | ⊢ ( 𝑥 ·R ( 𝑧 +R 𝑣 ) ) = ( ( 𝑥 ·R 𝑧 ) +R ( 𝑥 ·R 𝑣 ) ) | |
| 39 | distrsr | ⊢ ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) = ( ( 𝑦 ·R 𝑤 ) +R ( 𝑦 ·R 𝑢 ) ) | |
| 40 | 39 | oveq2i | ⊢ ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) = ( -1R ·R ( ( 𝑦 ·R 𝑤 ) +R ( 𝑦 ·R 𝑢 ) ) ) |
| 41 | distrsr | ⊢ ( -1R ·R ( ( 𝑦 ·R 𝑤 ) +R ( 𝑦 ·R 𝑢 ) ) ) = ( ( -1R ·R ( 𝑦 ·R 𝑤 ) ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) | |
| 42 | 40 41 | eqtri | ⊢ ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) = ( ( -1R ·R ( 𝑦 ·R 𝑤 ) ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) |
| 43 | 38 42 | oveq12i | ⊢ ( ( 𝑥 ·R ( 𝑧 +R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) ) = ( ( ( 𝑥 ·R 𝑧 ) +R ( 𝑥 ·R 𝑣 ) ) +R ( ( -1R ·R ( 𝑦 ·R 𝑤 ) ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) |
| 44 | ovex | ⊢ ( 𝑥 ·R 𝑧 ) ∈ V | |
| 45 | ovex | ⊢ ( 𝑥 ·R 𝑣 ) ∈ V | |
| 46 | ovex | ⊢ ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ V | |
| 47 | addcomsr | ⊢ ( 𝑓 +R 𝑔 ) = ( 𝑔 +R 𝑓 ) | |
| 48 | addasssr | ⊢ ( ( 𝑓 +R 𝑔 ) +R ℎ ) = ( 𝑓 +R ( 𝑔 +R ℎ ) ) | |
| 49 | ovex | ⊢ ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ∈ V | |
| 50 | 44 45 46 47 48 49 | caov4 | ⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( 𝑥 ·R 𝑣 ) ) +R ( ( -1R ·R ( 𝑦 ·R 𝑤 ) ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) = ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) +R ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) |
| 51 | 43 50 | eqtri | ⊢ ( ( 𝑥 ·R ( 𝑧 +R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) ) = ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) +R ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) |
| 52 | distrsr | ⊢ ( 𝑦 ·R ( 𝑧 +R 𝑣 ) ) = ( ( 𝑦 ·R 𝑧 ) +R ( 𝑦 ·R 𝑣 ) ) | |
| 53 | distrsr | ⊢ ( 𝑥 ·R ( 𝑤 +R 𝑢 ) ) = ( ( 𝑥 ·R 𝑤 ) +R ( 𝑥 ·R 𝑢 ) ) | |
| 54 | 52 53 | oveq12i | ⊢ ( ( 𝑦 ·R ( 𝑧 +R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 +R 𝑢 ) ) ) = ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑦 ·R 𝑣 ) ) +R ( ( 𝑥 ·R 𝑤 ) +R ( 𝑥 ·R 𝑢 ) ) ) |
| 55 | ovex | ⊢ ( 𝑦 ·R 𝑧 ) ∈ V | |
| 56 | ovex | ⊢ ( 𝑦 ·R 𝑣 ) ∈ V | |
| 57 | ovex | ⊢ ( 𝑥 ·R 𝑤 ) ∈ V | |
| 58 | ovex | ⊢ ( 𝑥 ·R 𝑢 ) ∈ V | |
| 59 | 55 56 57 47 48 58 | caov4 | ⊢ ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑦 ·R 𝑣 ) ) +R ( ( 𝑥 ·R 𝑤 ) +R ( 𝑥 ·R 𝑢 ) ) ) = ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) +R ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ) |
| 60 | 54 59 | eqtri | ⊢ ( ( 𝑦 ·R ( 𝑧 +R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 +R 𝑢 ) ) ) = ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) +R ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ) |
| 61 | 1 2 3 4 5 6 10 24 37 51 60 | ecovdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) |