This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of signed reals is distributive. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | distrsr | ⊢ ( 𝐴 ·R ( 𝐵 +R 𝐶 ) ) = ( ( 𝐴 ·R 𝐵 ) +R ( 𝐴 ·R 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
| 2 | addsrpr | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ~R +R [ 〈 𝑣 , 𝑢 〉 ] ~R ) = [ 〈 ( 𝑧 +P 𝑣 ) , ( 𝑤 +P 𝑢 ) 〉 ] ~R ) | |
| 3 | mulsrpr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( ( 𝑧 +P 𝑣 ) ∈ P ∧ ( 𝑤 +P 𝑢 ) ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 ( 𝑧 +P 𝑣 ) , ( 𝑤 +P 𝑢 ) 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P ( 𝑧 +P 𝑣 ) ) +P ( 𝑦 ·P ( 𝑤 +P 𝑢 ) ) ) , ( ( 𝑥 ·P ( 𝑤 +P 𝑢 ) ) +P ( 𝑦 ·P ( 𝑧 +P 𝑣 ) ) ) 〉 ] ~R ) | |
| 4 | mulsrpr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ) | |
| 5 | mulsrpr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑣 , 𝑢 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) , ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) 〉 ] ~R ) | |
| 6 | addsrpr | ⊢ ( ( ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) ∧ ( ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ∈ P ) ) → ( [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R +R [ 〈 ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) , ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) 〉 ] ~R ) = [ 〈 ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) +P ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ) , ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ) 〉 ] ~R ) | |
| 7 | addclpr | ⊢ ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑧 +P 𝑣 ) ∈ P ) | |
| 8 | addclpr | ⊢ ( ( 𝑤 ∈ P ∧ 𝑢 ∈ P ) → ( 𝑤 +P 𝑢 ) ∈ P ) | |
| 9 | 7 8 | anim12i | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) ∧ ( 𝑤 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 +P 𝑣 ) ∈ P ∧ ( 𝑤 +P 𝑢 ) ∈ P ) ) |
| 10 | 9 | an4s | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 +P 𝑣 ) ∈ P ∧ ( 𝑤 +P 𝑢 ) ∈ P ) ) |
| 11 | mulclpr | ⊢ ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 ·P 𝑧 ) ∈ P ) | |
| 12 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑦 ·P 𝑤 ) ∈ P ) | |
| 13 | addclpr | ⊢ ( ( ( 𝑥 ·P 𝑧 ) ∈ P ∧ ( 𝑦 ·P 𝑤 ) ∈ P ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
| 15 | 14 | an4s | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
| 16 | mulclpr | ⊢ ( ( 𝑥 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑥 ·P 𝑤 ) ∈ P ) | |
| 17 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑦 ·P 𝑧 ) ∈ P ) | |
| 18 | addclpr | ⊢ ( ( ( 𝑥 ·P 𝑤 ) ∈ P ∧ ( 𝑦 ·P 𝑧 ) ∈ P ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) | |
| 19 | 16 17 18 | syl2an | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) |
| 20 | 19 | an42s | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) |
| 21 | 15 20 | jca | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) ) |
| 22 | mulclpr | ⊢ ( ( 𝑥 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑥 ·P 𝑣 ) ∈ P ) | |
| 23 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ 𝑢 ∈ P ) → ( 𝑦 ·P 𝑢 ) ∈ P ) | |
| 24 | addclpr | ⊢ ( ( ( 𝑥 ·P 𝑣 ) ∈ P ∧ ( 𝑦 ·P 𝑢 ) ∈ P ) → ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ∈ P ) | |
| 25 | 22 23 24 | syl2an | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑣 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ∈ P ) |
| 26 | 25 | an4s | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ∈ P ) |
| 27 | mulclpr | ⊢ ( ( 𝑥 ∈ P ∧ 𝑢 ∈ P ) → ( 𝑥 ·P 𝑢 ) ∈ P ) | |
| 28 | mulclpr | ⊢ ( ( 𝑦 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑦 ·P 𝑣 ) ∈ P ) | |
| 29 | addclpr | ⊢ ( ( ( 𝑥 ·P 𝑢 ) ∈ P ∧ ( 𝑦 ·P 𝑣 ) ∈ P ) → ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ∈ P ) | |
| 30 | 27 28 29 | syl2an | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑣 ∈ P ) ) → ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ∈ P ) |
| 31 | 30 | an42s | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ∈ P ) |
| 32 | 26 31 | jca | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ∈ P ) ) |
| 33 | distrpr | ⊢ ( 𝑥 ·P ( 𝑧 +P 𝑣 ) ) = ( ( 𝑥 ·P 𝑧 ) +P ( 𝑥 ·P 𝑣 ) ) | |
| 34 | distrpr | ⊢ ( 𝑦 ·P ( 𝑤 +P 𝑢 ) ) = ( ( 𝑦 ·P 𝑤 ) +P ( 𝑦 ·P 𝑢 ) ) | |
| 35 | 33 34 | oveq12i | ⊢ ( ( 𝑥 ·P ( 𝑧 +P 𝑣 ) ) +P ( 𝑦 ·P ( 𝑤 +P 𝑢 ) ) ) = ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑥 ·P 𝑣 ) ) +P ( ( 𝑦 ·P 𝑤 ) +P ( 𝑦 ·P 𝑢 ) ) ) |
| 36 | ovex | ⊢ ( 𝑥 ·P 𝑧 ) ∈ V | |
| 37 | ovex | ⊢ ( 𝑥 ·P 𝑣 ) ∈ V | |
| 38 | ovex | ⊢ ( 𝑦 ·P 𝑤 ) ∈ V | |
| 39 | addcompr | ⊢ ( 𝑓 +P 𝑔 ) = ( 𝑔 +P 𝑓 ) | |
| 40 | addasspr | ⊢ ( ( 𝑓 +P 𝑔 ) +P ℎ ) = ( 𝑓 +P ( 𝑔 +P ℎ ) ) | |
| 41 | ovex | ⊢ ( 𝑦 ·P 𝑢 ) ∈ V | |
| 42 | 36 37 38 39 40 41 | caov4 | ⊢ ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑥 ·P 𝑣 ) ) +P ( ( 𝑦 ·P 𝑤 ) +P ( 𝑦 ·P 𝑢 ) ) ) = ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) +P ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ) |
| 43 | 35 42 | eqtri | ⊢ ( ( 𝑥 ·P ( 𝑧 +P 𝑣 ) ) +P ( 𝑦 ·P ( 𝑤 +P 𝑢 ) ) ) = ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) +P ( ( 𝑥 ·P 𝑣 ) +P ( 𝑦 ·P 𝑢 ) ) ) |
| 44 | distrpr | ⊢ ( 𝑥 ·P ( 𝑤 +P 𝑢 ) ) = ( ( 𝑥 ·P 𝑤 ) +P ( 𝑥 ·P 𝑢 ) ) | |
| 45 | distrpr | ⊢ ( 𝑦 ·P ( 𝑧 +P 𝑣 ) ) = ( ( 𝑦 ·P 𝑧 ) +P ( 𝑦 ·P 𝑣 ) ) | |
| 46 | 44 45 | oveq12i | ⊢ ( ( 𝑥 ·P ( 𝑤 +P 𝑢 ) ) +P ( 𝑦 ·P ( 𝑧 +P 𝑣 ) ) ) = ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑥 ·P 𝑢 ) ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑦 ·P 𝑣 ) ) ) |
| 47 | ovex | ⊢ ( 𝑥 ·P 𝑤 ) ∈ V | |
| 48 | ovex | ⊢ ( 𝑥 ·P 𝑢 ) ∈ V | |
| 49 | ovex | ⊢ ( 𝑦 ·P 𝑧 ) ∈ V | |
| 50 | ovex | ⊢ ( 𝑦 ·P 𝑣 ) ∈ V | |
| 51 | 47 48 49 39 40 50 | caov4 | ⊢ ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑥 ·P 𝑢 ) ) +P ( ( 𝑦 ·P 𝑧 ) +P ( 𝑦 ·P 𝑣 ) ) ) = ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ) |
| 52 | 46 51 | eqtri | ⊢ ( ( 𝑥 ·P ( 𝑤 +P 𝑢 ) ) +P ( 𝑦 ·P ( 𝑧 +P 𝑣 ) ) ) = ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) +P ( ( 𝑥 ·P 𝑢 ) +P ( 𝑦 ·P 𝑣 ) ) ) |
| 53 | 1 2 3 4 5 6 10 21 32 43 52 | ecovdi | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R ) → ( 𝐴 ·R ( 𝐵 +R 𝐶 ) ) = ( ( 𝐴 ·R 𝐵 ) +R ( 𝐴 ·R 𝐶 ) ) ) |
| 54 | dmaddsr | ⊢ dom +R = ( R × R ) | |
| 55 | 0nsr | ⊢ ¬ ∅ ∈ R | |
| 56 | dmmulsr | ⊢ dom ·R = ( R × R ) | |
| 57 | 54 55 56 | ndmovdistr | ⊢ ( ¬ ( 𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R ) → ( 𝐴 ·R ( 𝐵 +R 𝐶 ) ) = ( ( 𝐴 ·R 𝐵 ) +R ( 𝐴 ·R 𝐶 ) ) ) |
| 58 | 53 57 | pm2.61i | ⊢ ( 𝐴 ·R ( 𝐵 +R 𝐶 ) ) = ( ( 𝐴 ·R 𝐵 ) +R ( 𝐴 ·R 𝐶 ) ) |