This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of signed reals is associative. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addasssr | ⊢ ( ( 𝐴 +R 𝐵 ) +R 𝐶 ) = ( 𝐴 +R ( 𝐵 +R 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
| 2 | addsrpr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R +R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = [ 〈 ( 𝑥 +P 𝑧 ) , ( 𝑦 +P 𝑤 ) 〉 ] ~R ) | |
| 3 | addsrpr | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ~R +R [ 〈 𝑣 , 𝑢 〉 ] ~R ) = [ 〈 ( 𝑧 +P 𝑣 ) , ( 𝑤 +P 𝑢 ) 〉 ] ~R ) | |
| 4 | addsrpr | ⊢ ( ( ( ( 𝑥 +P 𝑧 ) ∈ P ∧ ( 𝑦 +P 𝑤 ) ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( [ 〈 ( 𝑥 +P 𝑧 ) , ( 𝑦 +P 𝑤 ) 〉 ] ~R +R [ 〈 𝑣 , 𝑢 〉 ] ~R ) = [ 〈 ( ( 𝑥 +P 𝑧 ) +P 𝑣 ) , ( ( 𝑦 +P 𝑤 ) +P 𝑢 ) 〉 ] ~R ) | |
| 5 | addsrpr | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( ( 𝑧 +P 𝑣 ) ∈ P ∧ ( 𝑤 +P 𝑢 ) ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R +R [ 〈 ( 𝑧 +P 𝑣 ) , ( 𝑤 +P 𝑢 ) 〉 ] ~R ) = [ 〈 ( 𝑥 +P ( 𝑧 +P 𝑣 ) ) , ( 𝑦 +P ( 𝑤 +P 𝑢 ) ) 〉 ] ~R ) | |
| 6 | addclpr | ⊢ ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 +P 𝑧 ) ∈ P ) | |
| 7 | addclpr | ⊢ ( ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑦 +P 𝑤 ) ∈ P ) | |
| 8 | 6 7 | anim12i | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 +P 𝑧 ) ∈ P ∧ ( 𝑦 +P 𝑤 ) ∈ P ) ) |
| 9 | 8 | an4s | ⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 +P 𝑧 ) ∈ P ∧ ( 𝑦 +P 𝑤 ) ∈ P ) ) |
| 10 | addclpr | ⊢ ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑧 +P 𝑣 ) ∈ P ) | |
| 11 | addclpr | ⊢ ( ( 𝑤 ∈ P ∧ 𝑢 ∈ P ) → ( 𝑤 +P 𝑢 ) ∈ P ) | |
| 12 | 10 11 | anim12i | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) ∧ ( 𝑤 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 +P 𝑣 ) ∈ P ∧ ( 𝑤 +P 𝑢 ) ∈ P ) ) |
| 13 | 12 | an4s | ⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 +P 𝑣 ) ∈ P ∧ ( 𝑤 +P 𝑢 ) ∈ P ) ) |
| 14 | addasspr | ⊢ ( ( 𝑥 +P 𝑧 ) +P 𝑣 ) = ( 𝑥 +P ( 𝑧 +P 𝑣 ) ) | |
| 15 | addasspr | ⊢ ( ( 𝑦 +P 𝑤 ) +P 𝑢 ) = ( 𝑦 +P ( 𝑤 +P 𝑢 ) ) | |
| 16 | 1 2 3 4 5 9 13 14 15 | ecovass | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R ) → ( ( 𝐴 +R 𝐵 ) +R 𝐶 ) = ( 𝐴 +R ( 𝐵 +R 𝐶 ) ) ) |
| 17 | dmaddsr | ⊢ dom +R = ( R × R ) | |
| 18 | 0nsr | ⊢ ¬ ∅ ∈ R | |
| 19 | 17 18 | ndmovass | ⊢ ( ¬ ( 𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R ) → ( ( 𝐴 +R 𝐵 ) +R 𝐶 ) = ( 𝐴 +R ( 𝐵 +R 𝐶 ) ) ) |
| 20 | 16 19 | pm2.61i | ⊢ ( ( 𝐴 +R 𝐵 ) +R 𝐶 ) = ( 𝐴 +R ( 𝐵 +R 𝐶 ) ) |