This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used by real number construction. (Contributed by NM, 26-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovdir.1 | ⊢ 𝐴 ∈ V | |
| caovdir.2 | ⊢ 𝐵 ∈ V | ||
| caovdir.3 | ⊢ 𝐶 ∈ V | ||
| caovdir.com | ⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) | ||
| caovdir.distr | ⊢ ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) | ||
| caovdl.4 | ⊢ 𝐷 ∈ V | ||
| caovdl.5 | ⊢ 𝐻 ∈ V | ||
| caovdl.ass | ⊢ ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) | ||
| Assertion | caovdilem | ⊢ ( ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐷 ) ) 𝐺 𝐻 ) = ( ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdir.1 | ⊢ 𝐴 ∈ V | |
| 2 | caovdir.2 | ⊢ 𝐵 ∈ V | |
| 3 | caovdir.3 | ⊢ 𝐶 ∈ V | |
| 4 | caovdir.com | ⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) | |
| 5 | caovdir.distr | ⊢ ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) | |
| 6 | caovdl.4 | ⊢ 𝐷 ∈ V | |
| 7 | caovdl.5 | ⊢ 𝐻 ∈ V | |
| 8 | caovdl.ass | ⊢ ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) | |
| 9 | ovex | ⊢ ( 𝐴 𝐺 𝐶 ) ∈ V | |
| 10 | ovex | ⊢ ( 𝐵 𝐺 𝐷 ) ∈ V | |
| 11 | 9 10 7 4 5 | caovdir | ⊢ ( ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐷 ) ) 𝐺 𝐻 ) = ( ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐻 ) 𝐹 ( ( 𝐵 𝐺 𝐷 ) 𝐺 𝐻 ) ) |
| 12 | 1 3 7 8 | caovass | ⊢ ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐻 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) |
| 13 | 2 6 7 8 | caovass | ⊢ ( ( 𝐵 𝐺 𝐷 ) 𝐺 𝐻 ) = ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) |
| 14 | 12 13 | oveq12i | ⊢ ( ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐻 ) 𝐹 ( ( 𝐵 𝐺 𝐷 ) 𝐺 𝐻 ) ) = ( ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) ) |
| 15 | 11 14 | eqtri | ⊢ ( ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐷 ) ) 𝐺 𝐻 ) = ( ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) ) |