This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A compact form of atandm . (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandm3 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) | |
| 2 | atandm | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) | |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | sqeqor | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( i ↑ 2 ) ↔ ( 𝐴 = i ∨ 𝐴 = - i ) ) ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = ( i ↑ 2 ) ↔ ( 𝐴 = i ∨ 𝐴 = - i ) ) ) |
| 6 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 7 | 6 | eqeq2i | ⊢ ( ( 𝐴 ↑ 2 ) = ( i ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) = - 1 ) |
| 8 | orcom | ⊢ ( ( 𝐴 = i ∨ 𝐴 = - i ) ↔ ( 𝐴 = - i ∨ 𝐴 = i ) ) | |
| 9 | 5 7 8 | 3bitr3g | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = - 1 ↔ ( 𝐴 = - i ∨ 𝐴 = i ) ) ) |
| 10 | 9 | necon3abid | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) ≠ - 1 ↔ ¬ ( 𝐴 = - i ∨ 𝐴 = i ) ) ) |
| 11 | neanior | ⊢ ( ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ↔ ¬ ( 𝐴 = - i ∨ 𝐴 = i ) ) | |
| 12 | 10 11 | bitr4di | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) ≠ - 1 ↔ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
| 13 | 12 | pm5.32i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
| 14 | 1 2 13 | 3bitr4i | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ) |